001     1030932
005     20250912110145.0
024 7 _ |a 10.1162/imag_a_00101
|2 doi
024 7 _ |a 10.34734/FZJ-2024-05524
|2 datacite_doi
024 7 _ |a 40800417
|2 pmid
024 7 _ |a WOS:001531547100003
|2 WOS
037 _ _ |a FZJ-2024-05524
082 _ _ |a 050
100 1 _ |a Nomi, Jason S.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Systematic cross-sectional age-associations in global fMRI signal topography
260 _ _ |a Cambridge, MA
|c 2024
|b MIT Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1737100648_6866
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The global signal (GS) in resting-state functional MRI (fMRI), known to contain artifacts and non-neuronal physiological signals, also contains important neural information related to individual state and trait characteristics. Here, we show distinct linear and curvilinear relationships between GS topography and age in a cross-sectional sample of individuals (6-85 years old) representing a significant portion of the lifespan. Subcortical brain regions such as the thalamus and putamen show linear associations with the GS across age. The thalamus has stronger contributions to the GS in older-age individuals compared with younger-aged individuals, while the putamen has stronger contributions in younger individuals compared with older individuals. The subcortical nucleus basalis of Meynert shows a u-shaped pattern similar to cortical regions within the lateral frontoparietal network and dorsal attention network, where contributions of the GS are stronger at early and old age, and weaker in middle age. This differentiation between subcortical and cortical brain activity across age supports a dual-layer model of GS composition, where subcortical aspects of the GS are differentiated from cortical aspects of the GS. We find that these subcortical-cortical contributions to the GS depend strongly on age across the lifespan of human development. Our findings demonstrate how neurobiological information within the GS differs across development and highlight the need to carefully consider whether or not to remove this signal when investigating age-related functional differences in the brain.
536 _ _ |a 5251 - Multilevel Brain Organization and Variability (POF4-525)
|0 G:(DE-HGF)POF4-5251
|c POF4-525
|f POF IV
|x 0
536 _ _ |a 5252 - Brain Dysfunction and Plasticity (POF4-525)
|0 G:(DE-HGF)POF4-5252
|c POF4-525
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Bzdok, Danilo
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Li, Jingwei
|0 P:(DE-Juel1)164828
|b 2
|u fzj
700 1 _ |a Bolt, Taylor
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Chang, Catie
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Kornfeld, Salome
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Goodman, Zachary T.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Yeo, B. T. Thomas
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Spreng, R. Nathan
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Uddin, Lucina Q.
|0 P:(DE-HGF)0
|b 9
773 _ _ |a 10.1162/imag_a_00101
|g Vol. 2, p. 1 - 13
|0 PERI:(DE-600)3167925-0
|p 1 - 13
|t Imaging neuroscience
|v 2
|y 2024
|x 2837-6056
856 4 _ |u https://juser.fz-juelich.de/record/1030932/files/imag_a_00101.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1030932
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, United States †Corresponding Author: Jason S. Nomi (jnomi@mednet.ucla.edu)
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)164828
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-Juel1)164828
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5251
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5252
|x 1
914 1 _ |y 2024
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-09-26T09:40:26Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-09-26T09:40:26Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-09-26T09:40:26Z
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21