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ABSTRACT

The global signal (GS) in resting-state functional MRI (fMRI), known to contain artifacts and non-neuronal physiologi-
cal signals, also contains important neural information related to individual state and trait characteristics. Here, we 
show distinct linear and curvilinear relationships between GS topography and age in a cross-sectional sample of 
individuals (6-85 years old) representing a significant portion of the lifespan. Subcortical brain regions such as the 
thalamus and putamen show linear associations with the GS across age. The thalamus has stronger contributions to 
the GS in older-age individuals compared with younger-aged individuals, while the putamen has stronger contribu-
tions in younger individuals compared with older individuals. The subcortical nucleus basalis of Meynert shows a 
u-shaped pattern similar to cortical regions within the lateral frontoparietal network and dorsal attention network, 
where contributions of the GS are stronger at early and old age, and weaker in middle age. This differentiation 
between subcortical and cortical brain activity across age supports a dual-layer model of GS composition, where 
subcortical aspects of the GS are differentiated from cortical aspects of the GS. We find that these subcortical-cortical 
contributions to the GS depend strongly on age across the lifespan of human development. Our findings demonstrate 
how neurobiological information within the GS differs across development and highlight the need to carefully consider 
whether or not to remove this signal when investigating age-related functional differences in the brain.
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1.  INTRODUCTION

One of the biggest challenges in neuroscience is sep
arating signal from noise (Uddin, 2020). In functional 
neuroimaging generally, and in human connectomics 
investigations using resting-state functional MRI (fMRI) 
data specifically, this challenge has been addressed with 
processing pipelines that mitigate artifacts known to 
obscure neural signals (Ciric et al., 2017; Parkes et al., 
2018). The goal of these processing steps is to differenti-
ate noise and relevant neural signals in fMRI data by 
removing physiological, hardware, and head motion-
related signals to permit the discovery of underlying func-
tional network architectures in the human brain. The 
“global signal” (GS) refers to the time series of signal 
intensity averaged across all voxels covering the brain, 
yielding one aggregate statistic per subject. The process 
of GS regression has been widely adopted as a robust 
method for attenuating noise due to cardiac and respira-
tory events and other confounding signals (Power et al., 
2017). GS regression can also improve functional con-
nectivity (FC) prediction of behavior (Li, Kong, et  al., 
2019). However, the GS is also an important component 
of brain function. Simultaneous fMRI-intracranial EEG 
studies in macaque monkeys demonstrate that gamma-
band cortical electrical activity exhibits a positive correla-
tion with BOLD changes across the entire cerebral cortex 
(Schölvinck et al., 2010) and unilateral suppression of the 
cholinergic basal forebrain causes changes in GS topog-
raphy (Turchi et al., 2018). Simultaneous measurement of 
resting-state fMRI and calcium activity in awake rats has 
demonstrated significant correspondence between the 
GS measured non-invasively and neural spiking activity 
(Ma et  al., 2020). Taken together, the emerging picture 
from these studies suggests that the GS contains rele-
vant neural components, and does not simply represent 
noise in neuroscience investigations (Bolt et al., 2022; Li, 
Bolt, et al., 2019).

The GS has also been shown to contain important 
information related to behavioral traits and intrinsic net-
work organization in humans. We previously demon-
strated that GS topography was related to a population 
axis of positive and negative life outcomes and psycho-
logical function, particularly weighted in frontoparietal 
executive control network regions, in a sample of over 
1000 22-37 year old adults (Li, Bolt, et al., 2019). Positive 
and negative life outcomes included measures of educa-
tion, life satisfaction, cognitive flexibility, aggressive and 
internalizing behavior, alcohol abuse, and antisocial per-
sonality among others. More recently, we have shown 
that a dynamic spatiotemporal pattern that explains 
~20% of resting-state BOLD variance has a time series 
signature that is almost perfectly correlated (r = 0.97) with 

the GS (Bolt et  al., 2022). This spatiotemporal pattern 
consists of negative cortex-wide BOLD amplitudes within 
the somato-motor-visual (SMLV) complex, that then 
propagate toward cortical regions overlapping primarily 
with the frontoparietal network (FPN), but also with the 
default network (DN) and primary visual cortex (V1), fol-
lowed by a spatiotemporal sequence with positive BOLD 
amplitudes with the same dynamics. These findings fur-
ther suggest that the resting-state fMRI GS contains a 
rich source of important information relevant to large-
scale brain network functional organization and individual 
differences in human cognition and behavior.

These results fit with the more recent conception of 
the GS as an important source of neural information, 
rather than being solely a source of noise. Accordingly, a 
recently developed dual-layer model of GS composition 
proposes that the GS represents two different layers of 
brain function (Zhang & Northoff, 2022). The first is a 
background subcortical-cortical layer where cortical 
activity is modulated by arousal and vigilance via subcor-
tical regions such as the thalamus, basal forebrain, and 
midbrain. The second is a foreground cortico-cortical 
layer that is represented by network integration and seg-
regation that is associated with cognitive states during 
rest and task. These two layers may operate in concert or 
independently to facilitate brain activity. This dual-layer 
model of the GS helps to reconcile the involvement of the 
GS in arousal, physiology, and cognition. However, it is 
currently unclear how subcortical and cortical brain activ-
ity contributing to the GS may differ across early and later 
life stages.

Here, we undertake a comprehensive assessment of 
age-related changes in spatial topography of brain 
regions associated with the GS from 6-85 years of age. 
Despite the large amount of attention given to character-
izing GS topography (for a review see: Ao et al., 2021) 
and the impact of GS regression on some of the most 
commonly deployed preprocessing pipelines (Ciric et al., 
2017; Parkes et al., 2018; Power et al., 2017), the ques-
tion of how age shapes the topography of the GS has 
not been carefully considered. Consequently, the extent 
that existing findings documenting changes in large-
scale functional brain network configuration across age 
are potentially confounded with the differential imple-
mentation of GS regression across research groups is 
entirely unknown. We find distinct GS topography asso-
ciations with age that were reliably present across multi-
ple fMRI data preprocessing procedures. The findings 
suggest that the GS conveys neurobiologically meaning-
ful information that changes over the course of human 
development, and that developmental and aging studies 
choosing to implement GS regression warrant careful 
reconsideration.
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2.  MATERIALS AND METHODS

2.1.  Subjects and fMRI data

A 10-minute resting-state fMRI scan was obtained from 
601 subjects (6-85 years old; 240 males; Supplementary 
Fig. 1) without a current Diagnostic and Statistical Man-
ual of Mental Disorders (DSM) diagnosis from the Nathan 
Kline Institute (NKI) enhanced publicly available data 
repository (Nooner et al., 2012) (http://fcon​_1000​.projects​
.nitrc​.org​/indi​/enhanced/). All participants provided writ-
ten informed consent (written assent was obtained from 
minors and their legal guardian) for their data to be shared 
anonymously through the International Neuroimaging 
Data-Sharing Initiative (INDI) website (http://fcon​_1000​
.projects​.nitrc​.org/). Brain imaging was performed on a 
Siemens Trio 3.0 T scanner that collected a T1 anatomi-
cal image and multiband (factor of 4) EPI sequenced 
resting-state fMRI data (2x2x2 mm, 40 interleaved slices, 
TR = 1.4 s, TE = 30 ms, flip angle = 65°, FOV = 224 mm, 
404 volumes; ~9 minutes and 19 seconds). Participants 
were instructed to keep their eyes open and fixate on a 
cross centered on the screen. For quality control, we 
ensured that all participants had less than 0.5 mm aver-
age framewise displacement (FD). Linear regression 
revealed a significant linear FD-age association (β = 0.35, 
p = 1.23E-18) but no significant quadratic FD-age asso-
ciation (p = 0.9). Therefore, head motion was used as a 
nuisance covariate in all analyses.

2.2.  Preprocessing pipelines

To account for non-neuronal artifacts and head motion, 
analyses were conducted across several preprocessing 
pipelines (MP - minimally preprocessed; CR - covariate 
regression; ICA-FIX; temporal ICA (tICA)). Spatial ICA 
denoising, on which ICA-FIX is based, has been identi-
fied as one of the most effective tools for removing spa-
tially structured noise artifacts from fMRI data (Ciric et al., 
2018; Parkes et al., 2018). We also applied temporal ICA 
(tICA), which complements spatial ICA by removing tem-
porally structured global noise (Glasser et al., 2018). Col-
lectively, these methods were investigated to ensure that 
non-neuronal artifacts were not driving the age associa-
tions with GS topography. These preprocessing pipelines 
were implemented to demonstrate that GS topography 
associations with age are robust to a range of widely-
used denoising procedures.

2.3.  Minimally preprocessed (MP) pipeline

All resting-state fMRI data were preprocessed using FSL, 
AFNI, and SPM functions through DPARSF-A in DPABI 
(Yan & Zang, 2010). The first five images were removed to 

allow the MRI signal to reach equilibrium. Next, resting-
state fMRI data were despiked using AFNI 3dDespike, 
realigned, and normalized with DPARSF-A into 3 mm MNI 
space using a priori SPM EPI templates, smoothed using 
AFNI 3dBlurToFWHM (6  mm), and bandpass filtered 
using DPARSF-A (0.01 - 0.1 Hz).

2.4.  Covariate regression (CR) pipeline

After smoothing, DPARSF-A was used to calculate and 
regress out nuisance variables for covariate regression 
(CR) consisting of 24 motion parameters (six rigid-body 
head motion parameters, the previous time point for all 
six parameters, and the 12 squared derivatives; Friston 
et al., 1996), white matter time-series and cerebral spi-
nal fluid time-series (using DPABI default masks), and a 
linear detrend. Finally, the data were bandpass filtered 
(0.01 - 0.1 Hz).

2.5.  ICA-FIX denoising

Subject-level spatial ICA denoising (Griffanti et al., 2014) 
was conducted using ICA-FIX on minimally preprocessed 
data that were smoothed, but not subjected to covariate 
regression or bandpass filtering. The ICA-FIX classifier 
was trained on hand-classified independent components 
separated into noise and non-noise categories on data 
from 24 subjects (randomly sampled by choosing sub-
jects separated by ~10 years of age, with small and large 
amounts of head motion). Noise and non-noise compo-
nents were classified by visual inspection using compo-
nent maps, time-series, and power spectra (Griffanti 
et  al., 2017). The resulting component classifications 
were then fed into FMRIB’s ICA-FIX classification algo-
rithm (Salimi-Khorshidi et al., 2014) to automatically clas-
sify noise and non-noise components from individual 
subject data. Next, components classified as noise were 
regressed out of the data. Finally, the 24 motion parame-
ters and a linear trend were regressed out of the data, 
before a bandpass filter (0.01 - 0.1 Hz) was applied.

2.6.  Temporal independent component analysis 
(tICA) denoising

The temporal ICA (tICA) pipeline was conducted using 
the FastICA algorithm in Python (https://scikit​-learn​.org​
/stable​/modules​/generated​/sklearn​.decomposition​
.FastICA​.html). The tICA pipeline first conducted a group 
spatial ICA (sICA) on all 601 resting-state scans, produc-
ing 125 independent components (Glasser et al., 2018; 
Smith et al., 2012; Supplementary Figs. 2-6). Classifica-
tion of noise and non-noise components was conducted 
according to the procedure detailed in the ICA-FIX 

http://fcon_1000.projects.nitrc.org/indi/enhanced/
http://fcon_1000.projects.nitrc.org/indi/enhanced/
http://fcon_1000.projects.nitrc.org/
http://fcon_1000.projects.nitrc.org/
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html
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pipeline. Thirty-nine sICA components classified as noise 
were then regressed out of the remaining 86 non-noise 
sICA component time-courses. The cleaned time-
courses from the sICA were then concatenated across 
subjects to produce 86 time-courses, each with 239,799 
TRs (399 TRs x 601 subjects). These concatenated 
cleaned sICA time-courses and representative group 
component spatial maps were then subjected to a tICA 
that produced 75 tICA time-courses and the associated 
group tICA spatial component maps (Supplementary 
Figs. 7 and 8).

Temporal ICA components can be classified just as 
spatial ICA components with visual identification of net-
work activity and noise (Glasser et al., 2018). Nineteen of 
the 75 tICA components were identified as noise (Sup-
plementary Fig. 9). These components consisted of anti-
correlated activity within the brain stem (e.g., TC 2, TC 
17, TC 18) and striped banding representing head motion 
(e.g., TC 14, TC 28). Temporal ICA component 72 (Sup-
plementary Fig.  9) showed a general overall negativity 
across the cortex with little anti-correlation. Such tICA 
components in previous work have been proposed to 
represent a global component thought to be associated 
with the noise aspects of the GS (Glasser et  al., 2018; 
Smith et  al., 2012). Finally, the time-series from the 19 
group tICA noise components, the 39 group sICA noise 
components, the Friston 24 motion parameters, and a 
linear detrend were regressed out of each subject’s 
resting-state data before a bandpass filter was applied.

2.7.  Scrubbing

Frames where FD exceeded 0.5 mm (Power et al., 2012) 
were not included in the regression model (average num-
ber of scrubbed frames per subject was 31.43 of 399 TRs 
(12.70%; range 0 - 204 TRs; 204 TRs = 285.6 seconds or 
~4 minutes and 45 seconds)). There was a significant lin-
ear (β = 0.27, p = 4.289e-12) association between total 
number of scrubbed frames and age but no quadratic 
association (p = 0.69). All preprocessing pipelines were 
examined with and without scrubbing.

2.8.  Global signal topography and the general  
linear model

The GS was calculated as the mean time-series of all 
gray matter voxels within an SPM gray matter probability 
mask thresholded at 20%. Previous research has shown 
that the GS calculated across all voxels (white matter, 
CSF, etc.) in the brain compared to the GS calculated 
across only gray matter voxels in the brain are nearly 
identical (Glasser et al., 2018; Li, Bolt, et al., 2019), mak-
ing it unlikely that the current methodology influenced the 

results. Linear regression between the GS time-series 
and the time-series of each voxel produced whole-brain 
voxel-wise beta maps. Frames where FD (Power et al., 
2012) exceeded 0.5 mm were not included in the regres-
sion model for preprocessing pipelines with scrubbing. 
Next, each individual subject’s beta map was converted 
to z-statistics. Two general linear models (GLM) were 
then run in FSL using the whole-brain voxel-wise beta 
maps for all participants as the dependent variable (DV). 
The first GLM included linear age, mean FD, and sex as 
independent variables (IV) while the second GLM included 
linear age, quadratic age, mean FD, and sex as IVs. Age 
was the IV of interest within the first model, and quadratic 
age was the IV of interest within the second model. The 
resulting group spatial maps were thresholded in FSL 
(voxel-wise uncorrected at p  <  0.001 and cluster-wise 
corrected at p  <  0.05) using Gaussian Random Field 
(GRF) theory. The two GLMs were run across all prepro-
cessing pipelines.

3.  RESULTS

3.1.  Global signal topography across early  
and later life stages

The main results presented in Figures 1-3 are from the 
tICA pipeline. Global signal topography maps showed 
increased contributions of visual, frontal, and sensorimo-
tor brain regions to the GS across age (Fig.  1). GLM 
results show that GS topography has distinct cross-
sectional associations across early and later life stages 
across subcortical and cortical brain regions. For subcor-
tical brain regions, the thalamus shows a strong positive 
linear relationship with age, where associations between 
the thalamus and GS time-series (scatterplot represents 
voxels within the thalamus thresholded at z > 5 for pre-
sentation purposes) increased across age (Fig.  2). The 
nucleus basalis (-18, -2, -12) was identified using the 
localization from a previous GS study (X. Liu et al., 2018) 
and showed a positive quadratic effect, where associa-
tion with the GS was weakest during middle age but 
stronger in young and old age. Finally, the putamen 
showed a negative linear relationship with age where 
association with the GS is strongest in early age but 
weakest during old age. These results demonstrate that 
subcortical regions involved in arousal and vigilance have 
distinct age-dependent cross-sectional associations with 
the GS across early and later life stages.

For cortical brain regions, the lateral frontoparietal con-
trol network (parietal cortex overlapping with Schaefer ROI 
333) (17 Network 400 ROI parcellation; Schaefer et  al., 
2018), dorsal attention network (inferior temporal cortex 
overlapping with Schaefer ROI 271, 272; FEF overlapping 
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with Schaefer ROI 61, 261) showed a quadratic associa-
tion with the GS where network nodes coupled with the 
GS are strongest at early (<20 years) and later (>60 years) 
periods of life, and the weakest in middle age (Fig.  3). 
These results demonstrate distinct age-dependent large-
scale network associations with the GS in networks related 
to external attention and cognition such as the control net-
work and dorsal attention network.

3.2.  Preprocessing pipelines and imaging artifacts

Both linear and quadratic associations between GS 
topography and age were largely unaffected by prepro-
cessing choices and produced the same linear and qua-
dratic cross-sectional age effects as the main analysis 
(Supplementary Figs. 10 and 11). More conservative and 
liberal classifications of tICA noise components (that did 
and did not include tICA component 72 (Supplementary 
Fig. 9) produced similar results to the original 19 noise-
component classification presented here. Additionally, 
non-scrubbed analyses that were also run for all four pre-
processing pipelines showed no differences in linear and 
quadratic associations when compared with the main 
analyses that employed volume scrubbing (Supplemen-
tary Fig.  12). This shows that the noise and non-noise 

classification criteria of tICA components and the inclu-
sion or exclusion of volume scrubbing did not influence 
the pattern of results presented here.

In order to ensure that different preprocessing pipe-
lines did change the composition of the GS time-series 
while leaving GS topography cross-sectional effects with 
age generally unaffected, within-subject temporal cor-
relations between GS time-series across different prepro-
cessing pipelines were calculated. The within-subject 
average GS time-series showed a strong temporal cor-
relation across all preprocessing pipelines (rs  =  0.73 - 
0.96) (Fig.  4). The temporal correlation of the GS 
time-series between the FIX pipeline and the tICA pipe-
line was r = 0.76. The lower correlation between the FIX 
and tICA pipelines shows that the addition of tICA denois-
ing has a large influence on the composition of the GS, 
demonstrating that a large amount of variance was 
removed (r  =  0.76; R2 = 58% variance explained). This 
demonstrated the effectiveness of tICA denoising in 
removing spatially and temporally structured fMRI noise 
within resting-state data that contribute to the GS, and 
also demonstrates the robustness of the current GS 
topography-age effects.

Despite the large amount of variance removed from 
tICA denoising compared with ICA-FIX in the GS time-
series, the within-subject GS topography spatial map 
correlations showed little changes between the FIX 
pipeline and the tICA denoising pipeline (r = 0.96). This 
demonstrates that spatially and temporally structured 
noise do not significantly contribute to GS topography 
composition (Fig. 4); if spatially and temporally structured 
noise did have an influence on GS topography, the within-
subject spatial map correlation between the FIX and tICA 
pipelines should be much lower. Thus, although tICA 
denoising results in a quantifiable change in the GS time-
series composition, GS topography remains unaffected.

Group-level spatial correlations between the voxel-
wise GLM linear and quadratic spatial map outputs were 
used to quantify the influence of preprocessing pipeline 
on age effects. These results showed that spatial patterns 
of linear (rs = 0.81 - 0.97) and quadratic (rs = 0.77 - 0.97) 
GS topography GLM results for age effects are similar 
across preprocessing pipelines (Fig. 4). Thus, while the 
tICA preprocessing pipeline removes a significant 
amount of GS time-series variability, the within-subject 
GS spatial topography and group GLM GS spatial 
topography cross-sectional age effects remain relatively 
stable.

3.3.  Head motion and other considerations

Scatterplots showing the relationship between FC 
strength and head motion (i.e., FD) plotted according to 

Fig. 1.  Average global signal topography across 10-year 
age groups. Increased associations between the GS with 
visual, sensorimotor, and prefrontal cortical regions are 
found across each age group.
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spatial distance between ROIs were used to determine if 
head motion was producing the distance-dependence 
effect where short-range FC strength shows a negative 
association with FD and long-range FC strength shows a 
positive association with FD. The time-series from each 
ROI within the 400 ROI 17 network Schaefer parcellation 
(Schaefer et  al., 2018) were correlated across network 
node pairs to create a correlation matrix for each subject. 
Each connection was correlated with FD values across all 
subjects and then placed on the scatterplot according to 
the euclidean distance between each ROI. The scatter-
plots show that there is no distance-dependence effect 
of head motion for any preprocessing pipeline (Supple-
mentary Fig. 13). There was a general positive associa-
tion between FC and FD regardless of the distance 
between ROIs; the trendline was above zero on the 
y-axis, but the correlation was not dependent on the dis-
tance between ROIs. That is, although the trendline was 

above zero, the line was perpendicular to the zero of the 
y-axis with no visible slope. This is likely due to the use of 
a low-motion sample in the current study. Low-motion 
samples are one of the most effective ways to combat 
distance-dependence effects of head motion (Parkes 
et al., 2018).

To further ensure that head motion was not driving GS 
topography changes across age, we used a multivariate 
partial least squares (PLS) analysis implemented in Mat-
lab (McIntosh, Chau, & Protzner, 2004) to identify the 
spatial relationship between head motion and GS cou-
pling strength across the GS topography spatial maps 
from the tICA preprocessing pipeline. PLS maximizes 
the covariance among voxels with a behavioral variable 
of interest that is represented by a latent variable (LV) 
(Supplementary Fig. 14). This LV represents the multivar-
iate whole-brain voxel-wise spatial relationship between 
head motion (as measured by FD) and GS topography 

Fig. 2.  Group spatial maps showing subcortical associations between the global signal and voxel-wise time-series 
across age (p < 0.001 voxel-wise uncorrected and p < 0.05 cluster-wise corrected). Negative quadratic associations show 
that the global signal has weaker associations with the nucleus basalis in middle-aged individuals compared with younger 
and older individuals. The thalamus shows a positive linear association, where association with the GS is stronger in older 
individuals compared with younger individuals. The putamen shows a negative linear association where association with 
the GS is stronger in younger individuals compared with older individuals. The z-scored unstandardized beta is on the  
y-axis and age is on the x-axis.
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Fig. 3.  Group spatial maps showing cortical associations between the global signal and voxel-wise time-series across 
age (p < 0.001 voxel-wise uncorrected and p < 0.05 cluster-wise corrected). Positive quadratic associations show that 
the GS has stronger associations with regions of the lateral frontoparietal (parietal cortex) and dorsal attention networks 
(frontal eye fields and inferior temporal cortex) in younger and older individuals compared with middle aged individuals. 
Negative linear associations show that the GS is more weakly coupled with sensorimotor areas in older individuals 
compared to younger individuals. Other linear associations are shown for completeness, as quadratic effects take 
precedence over linear effects in general linear models within the same spatial areas. The z-scored unstandardized beta is 
on the y-axis and age is on the x-axis.

Fig. 4.  Temporal and spatial correlations across preprocessing pipelines. Within-subject time-series temporal 
correlations and within-subject maps spatial correlations represent the influence of preprocessing pipelines across 
subjects without considering the influence of age. Linear age GLM and quadratic age GLM effects represent the 
influence of preprocessing pipelines across group GLM effects for linear age and quadratic age. All matrices show 
strong associations across preprocessing pipelines (rs > 0.73). MP = minimally preprocessed; CR = covariate regression; 
FIX = ICA-FIX, tICA = temporal ICA.
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across subjects, and is differentiated from random noise 
using permutation testing (5000 permutations, p < 0.05). 
Each voxel within the LV is subjected to bootstrap esti-
mation of standard errors (5000 bootstraps; approxi-
mates a p value of <0.001) to determine if the voxel score 
is reliably different from zero. Each subject is then 
assigned a “brain score” that represents how strongly 
that subject’s data is represented within the LV. Each 
subject’s brain score was then used as an additional nui-
sance regressor in the linear and quadratic GLMs 
assessing the association between GS topography mag-
nitude and age, in addition to the average FD head 
motion and sex regressors from the original analyses. 
The results were unchanged from the main analyses 
(Supplementary Fig.  15), demonstrating that the influ-
ence of head motion on GS topography is spatially dis-
tinct from the influence of age on GS topography.

Previous research has shown that the GS is affected 
by the time of day when the brain scan was acquired 
(Orbon et al., 2020) and the state of arousal (Chang et al., 
2016), so the association between subject age and the 
start of the MRI scan session was examined as well as 
possible relationships between sleep quality and age 
(Supplementary Fig. 1). There were 597 subjects that had 
a listed start time for their MRI scan session. There was 
no significant correlation between subject age and the 
start time of the MRI scan session (p = 0.41). This sug-
gests that the start of the scan time should not have an 
influence on any of the age effects presented here.

Indexes of overall sleep quality were assessed using 
the Pittsburgh Sleep Quality Index (PSQI) (Buysse et al., 
1989) that provides a summary measure of sleep quality 
based on factors such as the duration of sleep, consis-
tency of sleep, influence of medications, and possible day-
time dysfunction. There were 525 subjects that had a total 
PSQI score. There was no significant correlation between 
overall PSQI sleep quality score and age (p = 0.19), sug-
gesting that differences in daytime arousal due to sleep 
quality across age did not influence the results.

4.  DISCUSSION

Global signal regression is a widely used fMRI prepro-
cessing step, yet this practice remains one of the most 
controversial topics in network neuroscience (T. T. Liu 
et al., 2017; Murphy & Fox, 2017; Uddin, 2020). By pro-
viding a whole-brain metric of average brain activation 
(i.e., the GS) coupled with individual voxel activation, GS 
topography represents a unique measure of intrinsic 
brain organization related to trait behavior, task states, 
and clinical diagnosis (Ao et  al., 2021; Li, Kong, et  al., 
2019b). Our results show that associations between brain 
regions and the GS depend strongly on age and spatial 

location in the brain. We also find that GS topography 
associations across age are stable across multiple pre-
processing pipelines, demonstrating support for GS 
topography as a useful way of characterizing overall brain 
activity and connectivity related to development. Our 
results demonstrate the utility of GS topography in char-
acterizing brain organization across a significant portion 
of the human lifespan and also suggest that careful con-
sideration of GS regression is warranted when age-
related FC effects are of interest.

The current study showed that subcortical regions 
have distinct coupling patterns with the GS across early 
and later life stages. The thalamus presented with stron-
ger associations with the GS across age. The thalamus 
has been identified as an integral initiating and mediating 
force of arousal and vigilance in the brain, as well as facil-
itating shifts in connectivity, activity, and network topol-
ogy (Shine et al., 2023). Stronger thalamic coupling with 
the GS across age could indicate that the portion of the 
GS related to arousal becomes increasingly important as 
individuals get older. On the other hand, the thalamus has 
been shown to play an important role in aging and cogni-
tion in task-fMRI studies (Goldstone et al., 2018). Thus, it 
is possible that the thalamus plays an integrative role in 
both vigilance and cognitive processes across age in the 
context of its role in GS composition.

The nucleus basalis demonstrated stronger associa-
tions with the GS at early and late periods of life compared 
with middle age. Previous research has demonstrated that 
deactivation of the nucleus basalis via chemical interven-
tion in macaques modulates the BOLD GS in the ipsilateral 
hemisphere (Turchi et al., 2018). This suggests a causal 
role of the nucleus basalis in cortical BOLD activity. The 
current study shows that the nucleus basalis has the same 
u-shaped pattern of coupling with the lateral frontoparietal 
and dorsal attention networks. Within the context of the 
current study, this may suggest that the contribution of 
nucleus basalis activity to the GS coordinates activity 
within the lateral frontoparietal control and dorsal attention 
networks. However, it is not possible to determine the 
causal direction of this relationship across age, as in vivo 
manipulation of the nucleus basalis is not possible to con-
duct safely in humans.

The current study shows quadratic patterns of associ-
ations between the GS and network nodes within the lat-
eral frontoparietal control network and dorsal attention 
network. Relative to middle age, these two networks 
show stronger associations with the GS at early 
(<20 years) and later periods (>60 years) of life. The oppo-
site pattern emerges in the medial prefrontal cortex, cau-
date, and lower-level visual cortices, where the 
association with the GS is weakest at early and later peri-
ods of life, with the strongest association with the GS in 
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middle age. These quadratic associations are similar to 
other age-FC trajectories that typically show a curvilinear 
pattern of network development, where within-network 
coupling increases while between-network coupling 
decreases until middle age (Fair et al., 2009). After middle 
age, within-network coupling increases while within-
network decreases (Betzel et al., 2014; Chan et al., 2014; 
Vij et al., 2018). The trajectory of the lateral frontoparietal 
network also closely resembles executive function per-
formance across development, where performance 
peaks in the 3rd and 4th decade of life before dropping 
off in old age (Ferguson et al., 2021). Taken together, cur-
vilinear trajectories of network integration and segrega-
tion, as well as executive function behavioral performance 
show similar curvilinear trajectories as the lateral fronto-
parietal control network. Thus, our results support a dual-
layer model of GS composition that demonstrates linear 
cross-sectional changes within the thalamus and senso-
rimotor regions as part of the background arousal layer 
against quadratic cross-sectional lateral frontoparietal 
control network changes in the foreground cortico-
cortical cognition layer.

These results are in accord with the dual-layer model 
of GS composition (Zhang & Northoff, 2022) that pro-
poses a subcortical-cortical background layer associ-
ated with arousal and vigilance via the thalamus and 
basal forebrain (X. Liu et al., 2018) and a cortico-cortical 
foreground layer associated with network organization 
and cognitive rest-task states (Zhang et al., 2020). Within 
the context of the current study, we find that subcortical 
and cortical contributions to the GS vary according to 
age. In early life, the GS shows stronger associations with 
the putamen, caudate nucleus, lateral frontoparietal con-
trol network, and the dorsal attention network. In middle 
age, the associations between these regions and the GS 
is weakest, with only the thalamus showing increased 
association with the GS. Finally, in old age, all subcortical 
and cortical regions show strong association with the GS, 
with the exception of the putamen which shows its weak-
est association with the GS in older age. These differing 
patterns across age suggest that the contribution of var-
ious brain regions to the GS changes across human 
development. The changing composition of brain activity 
contributing to the GS across early and later life may be 
an attempt at optimizing arousal and vigilance processes 
of the background subcortical-cortical layer with cogni-
tive processes of the cortical foreground layer. Future 
studies will need to examine the mechanisms driving 
these associations by identifying how differing levels of 
brain activity may be driving relationships with the GS 
time-series and in turn, influencing GS topography.

Our results also complement a recent study describ-
ing changes in the GS across age from 19 to 80 years of 

age (Ao et  al., 2022). Increasing age was shown to be 
associated with a reduction in GS variability, in accord 
with previous research showing that variability generally 
decreases across most of the brain with age (Garrett 
et al., 2010; Nomi et al., 2017). The GS also showed a 
shift from lower frequencies to higher frequencies across 
age, in accord with functional network connectivity stud-
ies of aging (Vij et al, 2018). Finally, the GS in older indi-
viduals presented with a more evenly distributed 
power-frequency relationship compared with the GS in 
younger individuals. As the GS is a sum of all brain activ-
ity, changes in the GS across age also reflect changes in 
overall brain function. Taken together, changes in the GS 
and its associated topography show distinct age-related 
changes that should be taken into consideration when 
interpreting studies using GS regression.

The systematic trajectories of GS topography across 
age make interpretation of studies using GS regression and 
age as a variable of interest complicated. As the age range 
of the sample increases, there is a greater possibility that 
different brain regions and networks will be influenced by 
GS regression. For example, GS regression may have a 
greater influence on the lateral frontoparietal network in 
younger and older age samples compared with middle age 
samples. Additionally, GS regression on young individuals 
may not influence thalamic and occipital cortex activity as 
much as GS regression on older adults. Thus, GS regres-
sion may have system-specific implications in categorical 
and dimensional fMRI age investigations. Further com-
pounding these issues is that it is unknown if GS regression 
will be beneficial or detrimental for identifying cognition 
related brain activity. That is, it is not possible to determine 
if the GS is driving activity in specific networks, or if specific 
network activity is driving the global signal in an age-
dependent manner. GS regression would be beneficial in 
the former case, but detrimental in the latter. Currently, the 
underlying physiological and neuronal contributions to the 
global signal remain unknown.

Future studies should carefully consider the implemen-
tation of GS regression, as its application may have import-
ant influences on analysis results. There may be additional 
factors to consider when deciding if to apply GS regres-
sion to studies exploring aging effects. This may include 
the types of artifact in the data and how well GS regression 
removes the artifacts in question. For example, while GS 
regression may be effective in removing certain respiratory 
and cardiac artifacts within the BOLD signal, head motion 
may be better addressed using low-motion samples or 
scrubbing. Respiratory and cardiac effects may also be 
better addressed using spatial and temporal ICA denois-
ing. Finally, multi-echo ICA denoising has shown to be 
effective at removing artifacts related to the GS while  
leaving neural signals untouched (Setton et  al., 2022; 
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Spreng et al., 2019). Each dataset contains its own unique 
artifactual properties, and the choice of preprocessing 
pipeline should consider how to best address various 
types of noise within the BOLD signal.

4.1.  Limitations and future directions

Although previous research suggests that temporal ICA 
denoising effectively removes structured global artifacts 
such as head motion, respiration, and cardiac events 
from resting-state fMRI data (Glasser et  al., 2018), it is 
still possible that unstructured spatial and temporal noise 
has an influence on age associations with GS topography 
and its lifespan associations. Importantly however, the 
significant change of GS composition between FIX and 
tICA preprocessing pipelines, combined with the fact that 
the GS topography effects remained virtually unchanged, 
suggests that GS topography is somewhat robust to 
such artifacts. Additionally, it is unclear if one would want 
to completely remove aspects of respiration and cardiac 
activity associated with neural function as they play an 
important role in the dual-layer model of GS composition 
(Zhang & Northoff, 2022) as they are intricately linked with 
the GS (Bolt et al., 2023). These factors along with previ-
ous research showing that the GS is strongly associated 
with brain network activity (Gotts et al., 2020) and behav-
ioral traits (Li, Kong, et al., 2019) show how GS topogra-
phy can be of further interest to neuroscientists as a 
biologically important aspect of brain function.

Future studies are needed to replicate the findings in 
additional datasets, extend the results even further to 
individuals outside of the 6-85 year age range of the cur-
rent study, and further disentangle possible higher order 
non-linear associations. Datasets that cover the entirety 
of the lifespan from fetal stage to late life stages are 
needed to further elucidate the development of the GS 
and its associated topography. Infant and fetal scanning 
are becoming increasingly common, which will eventually 
allow for a more complete description of the evolution of 
GS topography. Additionally, higher-order modeling of 
non-linear associations and shorter age-ranges for cross-
sectional groups would allow for a more complete char-
acterization of GS topography changes. The current 
study represents one of the first steps in charting the 
development of the GS and its associated spatially dis-
tributed topography.

The current results also open up further avenues of 
possible exploration with regards to the impact of GS 
regression on aging studies using different types of ana-
lytical methodologies. For example, aging effects of brain 
function have been shown using a number of approaches 
such as functional connectivity gradients (Bethlehem 
et al., 2020), graph theory (Wright et al., 2021), brain signal 

variability (Nomi et  al., 2017), and ICA algorithms (Vij 
et al., 2018). Future studies should examine the relation-
ships between the impact of GS regression on the aging 
brain's functional architecture. Identifying the effects of 
regression of a global aspect of brain function will provide 
greater insight into how preprocessing choice, analysis 
choice, and brain function interact across age.

5.  CONCLUSIONS

In conclusion, we show that age is significantly associ-
ated with the spatial topography of the GS in resting-
state fMRI data. The thalamus and sensorimotor regions 
show distinct linear cross-sectional aging patterns com-
pared with the quadratic aging patterns found for the lat-
eral frontoparietal control network. Our results support a 
dual-layer view of the GS where composition of the GS 
may include a subcortical-cortical background layer 
modulating arousal via the thalamus and a cortico-
cortical foreground layer modulating cognition via the lat-
eral frontoparietal network that diverge as linear and 
quadratic effects across early and later life stages. Due to 
the importance and unabated controversy over GS 
regression, researchers should be cautious when consid-
ering the implications of its application. As the field of 
fMRI keeps maturing, understanding how GS regression 
may help or hinder statistical analyses, and potentially 
mask true age-related FC effects, will continue to be of 
paramount importance.
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