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1.  INTRODUCTION

Impulsivity has been defined as a tendency toward acting 
rapidly and/or with diminished forethought or consider-
ation of negative consequences to oneself or others 
(Dalley & Robbins, 2017; Hamilton, Littlefield, et  al., 
2015). Impulsive behaviours are a pervasive part of life for 
many individuals, from reckless driving (Teese & Bradley, 

2008) or reactive aggression (Gvion & Apter, 2011) to 

smoking (Sharma et  al., 2014) or thrill seeking (Cyders 

et al., 2007; Whiteside & Lynam, 2001). Thus, impulsivity 

plays a crucial role in the human condition, being strongly 

intertwined with cognitive control and decision-making 

(Dalley et al., 2011). Heightened impulsivity is believed to 

be a hallmark of several psychiatric disorders such as 
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attention-deficit/hyperactivity disorder (ADHD), sub-
stance abuse, and bipolar disorder (Moeller et al., 2001), 
which has informed theories of impulsivity as a transdiag-
nostic marker (Amlung et  al., 2019; Berlin & Hollander, 
2014). Therefore, understanding the neural mechanisms 
behind impulsivity is of high research and societal value.

Behavioural and theoretical investigations of impulsiv-
ity indicate it is a multi-dimensional psychological con-
struct (Bari & Robbins, 2013; Caswell et al., 2015; Dalley 
& Robbins, 2017; Dalley et  al., 2011; Dick et  al., 2010; 
MacKillop et al., 2016; Reynolds et al., 2006, 2008), and 
some authors even argue there is no single umbrella con-
struct of impulsivity at all (Cyders, 2015; Strickland & 
Johnson, 2021). Despite variations in proposed models, 
suboptimal response inhibition and decision-making con-
cerning delayed consequences frequently appear as key 
cognitive-behavioural dimensions. Delayed-consequence 
sensitivity (DCS) reflects the subjective decrease in 
reward value as a function of the delay in obtaining that 
reward and is classically investigated using the delay dis-
counting paradigm (Strickland & Johnson, 2021). Impul-
sive individuals tend to display steeper discounting, 
which is the tendency to prefer smaller more immediate 
rewards over larger later ones (Amlung et al., 2019; Frost 
& McNaughton, 2017). This behaviour has been other-
wise labelled as “impulsive choice” (Hamilton, Mitchell, 
et  al., 2015; Winstanley et  al., 2006) or “impulsive 
decision-making” (Sharma et al., 2014). Response inhibi-
tion, the capacity to inhibit a prepotent response ten-
dency, is typically investigated using go/nogo, stop-signal, 
or 5-choice serial reaction time tasks. Its failure has been 
considered impulsive and has been referred to as “impul-
sive action” (Winstanley et al., 2006) or “rapid-response 
impulsivity” (Hamilton, Littlefield, et al., 2015). It is char-
acterised by premature responses resulting in commis-
sion errors (not stopping/responding when instructed to) 
and impaired reaction time (Bari & Robbins, 2013; Lipszyc 
& Schachar, 2010; Ioannidis et  al., 2019). The reaction 
time on the stop-signal task (SSRT) is traditionally esti-
mated using the independent race model, conceptual-
ised as a function of go reaction time and stop-signal 
delays (Logan & Cowan, 1984).

Studies investigating the neural mechanisms of impul-
sivity in humans have mainly focused on investigating 
associations between self-reported impulsive traits and 
brain activation derived from response inhibition and 
DCS tasks (Christakou et al., 2011; DeVito et al., 2013; 
Sripada et al., 2011; Wilbertz et al., 2014) or other unre-
lated paradigms (Anandakumar et  al., 2018; S. Wang 
et  al., 2017). However, self-report measurements from 
trait-based or personality models of impulsivity (Cyders 
et al., 2007; Whiteside & Lynam, 2001) are unrelated to 
assessments of behavioural performance and provide a 

largely independent body of evidence (Cyders & 
Coskunpinar, 2011; Sharma et  al., 2014; Strickland & 
Johnson, 2021). Other studies have instigated brain acti-
vation related to impulsive responses on both dimensions 
without mixing state and trait impulsivity (Boecker et al., 
2011; McClure et al., 2004) as well as associations with 
model-based variables from these tasks, such as the dis-
counting parameter k or subjective valuation of rewards 
in DCS (Kable & Glimcher, 2007). These studies point to 
the ventral striatum and ventromedial PFC, sometimes 
referred to as the valuation system, underlying impulsive 
choices in DCS (Noda et al., 2020; Owens et al., 2017; 
Schüller et  al., 2019). Conversely, the posterior medial 
frontal cortex covering the pre-supplementary motor area 
(pre-SMA) and anterior midcingulate cortex (aMCC) is 
believed to play an important role in error monitoring 
when inhibition fails, as activity in these regions has been 
reliably found during commission errors (Cieslik et  al., 
2023; Ullsperger et al., 2014).

A large body of theoretical work considers impulsivity 
as a form of a trade-off between self-control and impul-
sive responses (Dalley et al., 2011; Sharma et al., 2014; 
Whiteside & Lynam, 2001). Therefore, a comprehensive 
account of the neural mechanisms behind impulsivity 
within each dimension ought to capture regions related 
to “controlled” responses (i.e., successful inhibition and 
shallow discounting) on top of those linked to “impulsive” 
responses (i.e., commission errors and steeper discount-
ing) discussed above. Specifically, evidence suggests 
that the regions within the multiple-demand network 
(Duncan, 2010) such as the anterior insula, medial frontal 
cortex, right fronto-parietal regions, and basal ganglia 
subserve inhibitory control exerted to prevent premature 
“go” responses, that is successful inhibition (Cieslik et al., 
2023; Hamilton, Littlefield, et  al., 2015; Verbruggen & 
Logan, 2008; R. Zhang et al., 2017). Conversely, the right 
dorsolateral prefrontal cortex (PFC) and parietal regions 
have been associated with choices of larger later rewards 
(LL) and shallower discounting (Hamilton, Mitchell, et al., 
2015; Noda et  al., 2020; Owens et  al., 2017; Schüller 
et al., 2019). Finally, within the framework of the indepen-
dent race model (Logan & Cowan, 1984), where perfor-
mance on the stop-signal task is modelled as a race 
between go and stop processes, both processes may 
have independent control mechanisms with dedicated 
circuits. Studies investigating their neural correlates point 
to the right inferior frontal cortex subserving the control of 
stopping (Aron et al., 2014). Taken together, brain activa-
tion studies of impulsivity point to two largely distinct 
functional systems associated with response inhibition 
and DCS with a potentially overlapping fronto-parietal 
control system. However, despite extensive research, a 
comprehensive picture of the topic is still missing as 
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dimensions have been studied predominantly in isola-
tion. Furthermore, systematic comparisons of the func-
tional architecture related to both controlled and impulsive 
responding across dimensions are lacking.

While brain activation studies of impulsivity point to two 
largely distinct functional systems, they cannot rule out 
regional interactions across networks. Consequently, to 
better understand the functional organisation underlying 
these networks, it is important to also consider their con-
nectivity. Resting-state functional connectivity has 
emerged as a valuable tool for evaluating the functional 
organisation of the brain, suggesting it is organised into 
large-scale networks that integrate information across 
spatially distributed regions (van den Heuvel & Hulshoff 
Pol, 2010; Yeo et al., 2011). Disruptions to this organisa-
tion and its efficiency have been linked to cognition and 
many psychiatric disorders (Bassett et  al., 2018; 
Castellanos et al., 2013; Shine, 2019). Whereas the regions 
underlying response inhibition and DCS can be generally 
attributed to large-scale networks based on their spatial 
overlap, the connectivity between the regions associated 
with controlled and impulsive responding within and 
across dimensions, specifically, has not been investigated.

Beyond activation and connectivity on the level of 
brain regions, neurotransmitter systems play a significant 
role in many theoretical accounts of impulsivity as mech-
anisms modulating behavioural performance (Chamberlain 
& Sahakian, 2007; Dalley & Robbins, 2017; Dalley et al., 
2011). Psychostimulant drugs such as methylphenidate, 
which block the reuptake of dopamine and norepineph-
rine, can substantially alleviate symptoms and improve 
response inhibition even in healthy individuals (Aron & 
Poldrack, 2006; Hanwella et al., 2011; Nagashima et al., 
2014). Functionally, these improvements may be partly 
ascribed to increased right inferior frontal and insula acti-
vation (Rubia et al., 2014). Atomoxetine, a norepinephrine 
reuptake inhibitor, reduces delay discounting and boosts 
inhibition in rodents (Robinson et al., 2008). Outside psy-
chostimulants, dopamine has been associated with 
addiction (Berke & Hyman, 2000; Wise & Robble, 2020) 
and is a major candidate for passing reward prediction 
errors within the valuation system (Nasser et  al., 2017). 
Findings from the animal literature show that lesions to 
the nucleus accumbens—a dopamine-rich nucleus—
increase impulsivity on DCS tasks and may also impair 
response inhibition (Basar et  al., 2010). Finally, there is 
some evidence for the involvement of serotonin in 
response inhibition, which is impaired following serotonin 
depletion (Worbe et al., 2014). It has also been inversely 
related to aggression, a behavioural manifestation of 
impulsivity, with serotonin 5HT1A/1B receptor agonists 
reducing aggressive behaviour (de Boer & Koolhaas, 
2005; da Cunha-Bang & Knudsen, 2021; Duke et  al., 

2013). On the level of large-scale functional networks, 
neurotransmitter systems may facilitate flexible behaviour 
by dynamically modulating the balance between segrega-
tion and integration between network regions (Hansen 
et al., 2022; Shine, 2019). These in turn may be observed 
as changes in resting-state functional connectivity, mani-
festing as reshaping of network organisation (Shafiei 
et al., 2019; Shine et al., 2018).

Here we aimed to comprehensively delineate the brain 
networks associated with impulsivity using coordinate-
based ALE meta-analyses (Eickhoff et  al., 2009, 2012; 
Turkeltaub et  al., 2002) and resting-state functional con-
nectivity. We focused on two cognitive-behavioural dimen-
sions that show consensus across most performance-based 
models of impulsivity and are commonly investigated with 
neuroimaging: delayed-consequence sensitivity and 
response inhibition. We mainly meta-analysed both the 
activity associated with “impulsive” responding (i.e., impul-
sive action and choice) characterised by commission 
errors or preference for SS rewards and non-impulsive, 
“controlled” responding characterised by successful inhi-
bition or preference for LL rewards within each dimension. 
Furthermore, we searched the literature for brain activation 
associated with model-based performance metrics that 
are well established for modelling task performance in 
behavioural literature: discounting factor k, subjective valu-
ation of reward in the delay discounting task (Kable & 
Glimcher, 2007), and SSRT in the stop-signal task 
(Verbruggen & Logan, 2008). Next, we characterised the 
functional network organisation using connectivity and 
graph-theoretical methods, in two independent large-scale 
datasets, and investigated whether the two dimensions are 
subserved by distinct functional networks. Finally, given 
the widespread use of neurotransmitter-acting medication 
to treat conditions with impulsive symptoms (Chamberlain 
& Sahakian, 2007), we investigated in a follow-up explor-
atory analysis the associations between network organisa-
tion (measured as integration and segregation) and 
receptor density. We restricted these analyses to neu-
rotransmitter systems (dopamine, serotonin, and norepi-
nephrine) that have been functionally and genetically 
associated with impulsivity (Dalley et al., 2011).

2.  METHODS

2.1.  Meta-analysis

We performed a literature search using PubMed (https://
www​.ncbi​.nlm​.nih​.gov​/pubmed) and Web of Science 
(https://webofknowledge​.com) for articles published 
until the 10th March 2022 that investigated brain activa-
tion related to either a DCS or response inhibition with 
fMRI or PET. Additionally, reference tracing of systematic 

https://www.ncbi.nlm.nih.gov/pubmed
https://www.ncbi.nlm.nih.gov/pubmed
https://webofknowledge.com
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reviews and meta-analyses (on the topics of impulsivity 
more broadly), as well as response inhibition and delay 
discounting was done. The search terms were selected 
in keeping with the “pure measures” of impulsivity within 
each dimension as suggested by Strickland and 
Johnson (2021). For DCS, these were “delay discount-
ing,” “temporal discounting,” and “delayed reward” as 
well as each of the keywords separately. The database 
for response inhibition studies using the go/nogo and 
stop-signal paradigms in adults was obtained from a 
recent meta-analysis by Cieslik et al. (2023). We enriched 
this database by adding studies with adolescent partic-
ipants for which we used the same search terms as pre-
sented in Cieslik et al. (2023), namely “stop signal task,” 
“go no-go task,” “go nogo task,” “response inhibition,” 
“inhibition,” “action withholding,” “action cancellation,” 
“action inhibition,” “motor inhibition,” and “inhibitory 
control.”

We included only results from peer-reviewed fMRI or 
perfusion PET experiments reporting results of whole-
brain group analyses as coordinates in a standard neuro-
anatomical reference space (Talairach/Tournoux or 
Montreal Neurological Institute). Results from region-of-
interest (ROI) analyses and studies with partial brain cov-
erage were excluded. Only data from healthy participants 
(including healthy control groups from patient studies) 
with mean age >= 12 (with an absolute minimum age of 
individual participants no lower than 10) were retained. 
Studies with pharmacological interventions, connectivity-
based analyses, and single-subject reports were 
excluded. For studies reporting more than one eligible 
experiment obtained in the same sample, the reported 
coordinates were pooled to form a single experiment 
when included in the same meta-analysis (i.e., coordi-
nates from go/nogo and stop-signal tasks in the same 
subject group were pooled). If each experiment included 
a different set of participants, coordinates were not 
pooled. In cases where different studies or experiments 
reported results from partly overlapping samples such as 
in Kable & Glimcher (2007 and 2010), coordinates were 
pooled to form a single experiment and the smaller sam-
ple size of the two original experiments was used as the 
input to the analysis. In cases where any of the above 
criteria were unclear from screened publications, the cor-
responding authors were contacted. Lastly, authors of 
clinical studies that passed our inclusion criteria but 
reported pooled activation for clinical and healthy control 
groups were contacted for data from the healthy control 
group only. Of these, three authors responded and are 
indicated in the table of included studies in the Supple-
mentary Material. For a reporting checklist detailing anal-
ysis and study selection choices as suggested by Müller 
et al. (2018), see Supplementary Table S1.

Our contrasts of interest were, in general, analyses 
contrasting impulsive with non-impulsive, “controlled” 
behaviour and vice versa, as impulsivity in the pertinent 
paradigms is behaviourally expressed by a higher fre-
quency of “impulsive responding” such as commission 
errors (failure to inhibit action when necessary) or choices 
of smaller but sooner rewards (over larger but later ones). 
To differentiate the two types of contrasts, we refer to 
contrasts reflecting impulsive behaviour as “impulsive 
responding” and to the reverse contrasts reflecting non-
impulsive behaviour as “controlled responding.” Sec-
ondly, we searched for correlations with model-based 
variables extracted from behaviour (discounting parame-
ter k, subjective value and SSRT). While for DCS there 
was a sufficient number of studies reporting model-based 
variables (especially subjective value), we only found one 
study investigating SSRT that fulfilled our inclusion crite-
ria. We therefore did not consider SSRT for further analy-
ses. Experiments reporting relative deactivations were 
interpreted as results of the opposite contrast to that 
specified (e.g., deactivation observed in a smaller sooner 
> larger later rewards contrast was interpreted as activa-
tion associated with larger later > smaller sooner rewards) 
unless otherwise specified in the respective publication. 
A detailed description of the selected contrasts for each 
impulsivity dimension is provided below. After the exclu-
sion of unsuitable studies (see Fig. 1), the final sample 
consisted of 46 studies reporting 72 experiments on 
delayed-consequence sensitivity (18 reporting impulsive 
responding, 26 controlled responding, 4 correlation with 
discount factor k, and 24 correlation with subjective 
value) and 100 studies reporting 123 experiments on 
response inhibition (26 reporting impulsive responding, 
96 controlled responding, and 1 correlation with SSRT). 
Details on all studies included can be found in the Sup-
plementary Material.

2.1.1.  Delayed-consequence sensitivity

Experiments were separated into three categories: impul-
sive responding, controlled responding, and subjective 
value and separate meta-analyses were calculated for 
each category. For impulsive responding, results of smaller 
sooner (SS) > larger later (LL) rewards, immediate > 
delayed choice, and β > δ contrasts were selected, while 
for controlled responding, the opposite contrasts were 
included, namely LL > SS, delay > immediate, and δ > β. 
β is theorised to reflect an “impatient system” and is usu-
ally coded in fMRI paradigms as blocks of trials where 
immediate rewards are possible, while δ represents the 
“patient system” and is coded as blocks of choices 
where only delayed choices occur (Laibson, 1997; 
McClure et al., 2004). We further included contrasts that 



5

M. Gell, R. Langner, V. Küppers et al.	 Imaging Neuroscience, Volume 2, 2024

tested for across-participant correlations between brain 
activity and the temporal discount parameter k (or similar 
constructs reflecting the degree to which individuals dis-
count future rewards). However, as we could not identify 
enough experiments correlating whole-brain activation 
with k (three experiments reported positive correlations 
and one reported negative correlations) for calculating a 
separate analysis, we have included these experiments in 
our meta-analyses of impulsive and controlled respond-
ing. As higher k indicates stronger impulsive tendencies, 
positive correlations were included in the meta-analysis 
of impulsive responding and negative correlations in the 
analysis of controlled responding. Lastly, the parametric 
modulation and correlation of activity with subjective 
value were coded as a third category of experiments as 
choices between SS and LL rewards are highly influ-
enced by the perceived subjective value of the rewards, 
which is believed to track the valuation processes during 
delay discounting tasks (Kable & Glimcher, 2007; Schüller 
et al., 2019). Therefore, in total we included 46 studies 
reporting 72 experiments on DCS (21 reporting impul-
sive, 27 controlled responding, and 24 subjective value).

2.1.2.  Response inhibition

Similarly to DCS, we aimed to include three categories of 
studies: impulsive responding, controlled responding, and 
model-based variables. Following the guidelines for per-
forming well-powered fMRI meta-analyses (Eickhoff et al., 
2016; Müller et al., 2018), we were not able to find a suit-

able number of experiments reporting results of the direct 
comparison between impulsive and controlled responding 
in stop-signal and go/nogo tasks (with only 15 for impul-
sive > controlled and 7 experiments for controlled > impul-
sive). We, therefore, selected experiments contrasting 
against control conditions not reflecting impulsivity like 
“Go” conditions (no need for inhibition) or rest/fixation and 
then calculated the contrast of interest (impulsive vs. con-
trolled) on the meta-analytical level. In particular, experi-
ments that contrasted brain activation during commission 
errors or successful inhibition against baseline (Go, fixa-
tion or rest) were included. First, we calculated separate 
meta-analyses for impulsive responding > baseline and 
controlled responding > baseline, respectively. Next, we 
compared impulsive and controlled responding by calcu-
lating meta-analytic contrasts and conjunction analyses 
(for further details, see section Activation Likelihood Esti-
mation below). Regions found in the conjunction thus 
reflect control signals found for both, successful and failed 
Stop, while those identified with the contrast analyses are 
more associated with one condition than with the other. 
Finally, separate analyses were calculated for the two 
tasks (SST and Go/No-Go) separately in order to ensure 
that results from the overall analyses combining the tasks 
were not driven by one of them. As mentioned above, 
within behavioural performance models, impulsivity has 
been not only operationalised as failures of inhibition but 
also as the latency of inhibition. Based on this, the stop-
signal reaction time (SSRT) is often estimated using the 
race model (Logan & Cowan, 1984) during the performance 

Fig. 1.  Flow diagram of study selection for the meta-analyses. The total sample size for each contrast is denoted with 
n. In the flow diagram, “study” refers to a publication and “experiment” to the specific contrast reported. In case a study 
reported multiple contrasts within the same category (e.g., stop-signal), it was counted as one experiment.
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of the stop-signal task. Unfortunately, we were not able to 
identify a suitable number of studies investigating the cor-
relation of activation with SSRT that fulfilled our inclusion 
criteria. This might be due to the fact that in fMRI the 
Stop-Event can be modelled and, therefore, the main 
focus is on contrasts between the Stop and Go (or failure) 
events. After excluding unsuitable studies (68 ROI only 
analysis and 22 not reporting our contrast of interest; see 
the ANIMA database for a full breakdown of this search), 
only a single study by Hu et al. (2014) was identified. We, 
therefore, decided to only focus on the contrast between 
conditions for response inhibition.

2.1.3.  Activation likelihood estimation (ALE)

All meta-analyses were performed using the ALE algo-
rithm for coordinate-based meta-analysis of neuroimag-
ing studies (Eickhoff et al., 2009, 2012; Turkeltaub et al., 
2002) that was implemented using in-house Matlab (ver-
sion 2017a) tools. The analyses were executed as 
described previously (Kogler et al., 2020) and according 
to the best-practice guidelines for neuroimaging meta-
analyses (Müller et al., 2018). The ALE algorithm aims to 
identify brain areas where activity across many experi-
ments converges more strongly than would be expected 
from a random spatial association. Briefly, to reflect the 
spatial uncertainty of activations, each activation focus 
was modelled as a centre of a 3D Gaussian probability 
distribution based on empirical data of between-template 
and between-subject variance. The between-subject vari-
ance was weighted by the number of participants in the 
respective experiment. For a given experiment, the prob-
ability distributions of each focus were then combined 
and a union over all experiments’ activation maps was 
computed. This yielded a voxel-wise estimated activation 
likelihood map (i.e., a map of ALE scores), which describes 
the degree of spatial convergence across all experiments. 
Lastly, in order to identify “true” convergence, the ALE 
scores were compared with an analytically derived null 
distribution (Eickhoff et al., 2012) reflecting random spatial 
associations between activation maps for all experiments. 
Results were thresholded at p  <  .05 (family-wise error-
corrected at cluster level with voxel-level cluster inclusion 
threshold at p < .001; Eickhoff et al., 2016).

2.1.4.  Meta-analytic contrast and conjunction 
analyses

Contrast and conjunction analyses were calculated 
between meta-analytic results within each behavioural 
dimension (i.e., for impulsive vs. controlled) to directly 
compare impulsive and controlled responding for response 
inhibition and simplify peak extraction (see below). Com-

monalities between the meta-analyses (both within-
dimension and between dimensions to evaluate 
overlapping regions) were assessed via conjunction anal-
ysis, which identifies voxels with significant convergence 
in both meta-analyses, calculated as the intersection of 
the cFWE-thresholded result maps. A cluster extent 
threshold of at least five voxels was applied to the result-
ing conjunction maps.

For contrast analyses, the voxel-wise differences 
between ALE scores of two meta-analyses were calcu-
lated and compared with a null distribution of difference 
scores. This null distribution was derived by pooling all 
experiments from the two meta-analyses and randomly 
dividing them into two groups of the same sample size as 
the original sets. This procedure was repeated 25,000 
times to yield an empirical null distribution of ALE-score 
differences which the observed difference in ALE scores 
was tested against. The resulting voxel-wise non-
parametric p values were thresholded at p < 0.05, with a 
cluster-wise extent threshold of at least five voxels. While 
for delayed-consequence sensitivity the number of 
included experiments was quite similar, for response inhi-
bition, the meta-analyses of controlled versus impulsive 
responding were unbalanced (96 vs. 26 experiments). To 
accommodate for the higher power of the controlled 
responding > baseline meta-analysis, we employed a 
subsampling procedure described in detail in the Supple-
mentary Methods.

2.1.5.  Peak extraction

Next, we created a network comprising all regions 
involved in response inhibition (impulsive and controlled 
responding) and DCS (impulsive responding and sub-
jective value). We thus combined the peaks of all meta-
analytical networks into one single network. Peaks were 
extracted from the conjunction and contrast analyses 
between the meta-analyses of each behavioural task 
dimension (as described above). Thus, the peaks were 
on the one hand based on those regions that were 
found to be involved in more than one meta-analysis as 
well as those that showed stronger convergence in one 
compared with another meta-analysis (within the DCS 
and response inhibition dimension, respectively). Peaks 
that lay in grey matter were thus extracted from the 
respective conjunction and contrast maps using fsl5 
(Smith et  al., 2004) [cluster] command with the mini-
mum distance between peaks set to 15 mm. For peaks 
coming from different maps (for example, conjunction 
and contrast maps) that were less than 15  mm apart 
from each other, we included only the peak with the 
higher z-score (Nostro et al., 2018). The extracted meta-
analytic nodes and all result maps are available in the 
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ANIMA database (Reid et  al., 2016): https://anima​.fz​
-juelich​.de​/studies

2.2.  Follow-up connectivity analyses  
for network characterisation

2.2.1.  Participants

For all connectivity modelling, two different datasets 
were used: one served as the discovery sample and one 
for replicating results. The discovery sample was chosen 
based on its cross-sectional design reflecting the sample 
used in the meta-analysis. This allowed us to use the 
same cut-off age range of 10 to 75 years present in the 
meta-analysis. Written consent from all subjects and eth-
ics approval were obtained locally at both sites. A joint 
re-analysis of the anonymised data was approved by  
the ethics committee of the Heinrich Heine University 
Düsseldorf (study ID: 2018-317-RetroDEuA).

As a discovery sample, we used the extended Nathan 
Kline Institute Rockland dataset (Nooner et  al., 2012). 
This amounted to resting-state and anatomical (f)MRI 
data of 608 healthy subjects (395 female) aged 10–
75 years. Only data from participants who had completed 
the full 10 min of scanning without excessive movement 
(defined here as mean frame-wise displacement of 
≤0.5 mm) were included in further analyses, resulting in a 
final sample of n = 528 healthy subjects (338 female, age: 
10–75  years). We used whole-brain T1 anatomical 
MPRAGE images (TR = 1,900 ms; 1 mm isotropic voxels) 
and resting-state fMRI (rsfMRI) multi-band echo-planar 
imaging (EPI) scans (TR = 1,400 ms; 2 mm isotropic vox-
els; duration = 10 min; 440 volumes), acquired on a 3-T 
Siemens Magnetom scanner.

For replication, the minimally pre-processed data of a 
sample of unrelated healthy subjects (n  =  339, 184 
female, aged 22–35  years) were obtained from the full 
release of the Human Connectome Project dataset (Van 
Essen et al., 2013). We excluded participants with incom-
plete resting-state scans or excessive movement (mean 
frame-wise displacement of >0.2 mm as used previously 
by, e.g., Yang et al., 2016) resulting in a final sample of 
n = 336 subjects (183 females, age: 22–35  years). The 
rsfMRI HCP scanning protocol involved acquiring whole-
brain multi-band gradient-echo EPI volumes on a 3-T 
Siemens “Connectome Skyra” scanner (TR  =  720  ms, 
2 mm isotropic voxels). Four rsfMRI sessions with 1,200 
volumes in total (14 min and 24 s) were acquired over two 
consecutive days, with one left-to-right (LR) and one 
right-to-left (RL) encoding direction acquired on each 
day. For the purposes of replicating our findings based 
on the eNKI sample, only data from the first session on 
the first day were used (so-called rest1LR).

2.2.2.  Preprocessing

The eNKI data were pre-processed using fMRIPrep ver-
sion 20.1.1 (Esteban et al., 2019; fMRIPrep 2020), which 
is based on Nipype version 1.5.0 (Gorgolewski et  al., 
2011; Nipype 2017). For a detailed description of each 
step, see Supplementary Methods. Briefly, this included 
skull-stripping, head-motion correction, and slice-time 
correction. The BOLD images were then co-registered to 
the native space of the subjects’ T1w image, normalised 
to MNI space, and motion-corrected.

The HCP data used here were minimally pre-
processed. The pre-processing pipeline has been 
described in detail elsewhere (Glasser et  al., 2016). 
Briefly, this included gradient distortion correction, image 
distortion correction, registration to subjects’ T1w image 
and to MNI standard space followed by intensity normal-
isation of the acquired rsfMRI images, and ICA FIX 
denoising (Salimi-Khorshidi et al., 2014).

For both datasets, additional denoising steps were 
undertaken using fMRIPrep output files or data provided 
by the HCP and in-house scripts in MATLAB (version 
2019b). First, we regressed mean time courses of two 
tissue classes (white matter and cerebrospinal fluid) and 
the global signal which has been shown to reduce 
motion-related artefacts (Ciric et  al., 2017). Next, data 
were linearly detrended, bandpass-filtered at 0.01–
0.1 Hz, and spatially smoothed using a Gaussian kernel 
of FWHM = 5 mm.

2.2.3.  Community detection and network measures

After averaging the time series from all grey-matter vox-
els within 5-mm spheres around the meta-analytically 
derived coordinates, node-to-node functional connectiv-
ity was calculated as the Pearson correlation between 
the time courses of each node. The resulting connectivity 
matrix for each participant was z-scored using Fisher’s z 
transformation and averaged across all participants. We 
employed the Louvain algorithm (Blondel et al., 2008), a 
stochastic method, for identifying distinct communities 
within a network by optimising Q, a modularity score 
(Betzel, 2020). For this, we used the community_lou-
vain.m function from the Matlab-based Brain Connectiv-
ity Toolbox (Rubinov & Sporns, 2010). The averaged 
connectivity matrix between all meta-analytic nodes was 
used as the input. We fine-tuned the community assign-
ment by using the communities resulting from applying 
the algorithm to the connectivity matrix as an additional 
input and repeated the procedure until Q remained con-
stant. Given the greedy stochastic nature of the algorithm 
(Good et  al., 2010), community assignment was evalu-
ated by repeating the procedure 1,000 times to obtain an 

https://anima.fz-juelich.de/studies
https://anima.fz-juelich.de/studies
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agreement matrix. To evaluate the node roles in the final 
community partition, we calculated the participation 
coefficient (participation_coef_sign.m) and within-module 
degree z-score (module_degree_zscore.m). The partici-
pation coefficient identifies whether a node’s connec-
tions are distributed across communities or clustered 
within a community and reflects between-module inte-
gration at high values and segregation at low values. The 
within-module degree z-score describes the connected-
ness of a node to its own community relative to other 
nodes in the same community and thus reflects within-
module integration.

2.2.4.  Seed-voxel connectivity gradients

While the above-described community detection identi-
fies communities based on node-to-node connectivity 
profiles, we additionally investigated network organisa-
tion based on the “node-to-rest of the brain” connectivity 
profiles (i.e., seed-to-voxel correlations). In order to 
determine whether nodes located in the same commu-
nity displayed similar connectivity to the rest of the brain, 
we identified principal axes of variation in the connectiv-
ity profiles across all nodes. This technique was recently 
used to determine spatial variation in both node-to-node 
(Margulies et al., 2016) and seed-to-voxel (J. Zhang et al., 
2019) connectivity, as well as structural characteristics 
such as microstructure (Paquola et al., 2019) across the 
cortex. Seed-to-voxel connectivity was calculated as 
Pearson correlation between the mean time courses of 
each node and all remaining grey-matter voxels in the 
brain, resulting in one connectivity map for each node per 
subject. Maps for each node were Fisher Z-transformed 
before averaging across participants. Next, we con-
structed a node-by-node similarity matrix, by transform-
ing the averaged (3D) seed-to-voxel connectivity map of 
each node into a vector and correlating the resulting vec-
tors from each node (resulting in a 21 x 21 matrix). To this 
matrix, we then applied principal component analysis 
using the BrainSpace toolbox (Vos de Wael). Only the top 
20% of node similarities were retained (i.e., sparsity 
parameter). The remaining parameters were kept the 
same as in previous work by Margulies et al. (2016), with 
α set to 0.05. We repeated the gradient decomposition 
using diffusion map embedding (Coifman et  al., 2005) 
and varying levels of sparsity (30% and 40%) in order to 
confirm our results were not subject to the choice of 
dimensionality reduction algorithm or parameters.

2.3.  PET-based receptor density analysis

To investigate the relationship between neurotransmitter 
receptor/transporter density and community organisa-

tion, we used PET-derived whole-brain maps available in 
the JuSpace toolbox (Dukart et al., 2021) available online 
(https://www​.fz​-juelich​.de​/inm​/inm​-7​/EN​/Resources​/​
_doc​/JuSpace​.html​?nn​=2463520). For the analysis, we 
only used receptor and transporter maps for neurotrans-
mitters theoretically related to impulsivity: serotonin, nor-
epinephrine, and dopamine (Chamberlain & Sahakian, 
2007; Dalley & Robbins, 2017; Dalley et al., 2011). In par-
ticular, for serotonin, we utilised the 5HT1a, 5HT1b, 
5HT2a, and serotonin transporter maps (SERT) (Savli 
et al., 2012), norepinephrine transporter map NAT (Hesse 
et  al., 2017) for norepinephrine, and D1 (Kaller et  al., 
2017), D2 (Alakurtti et  al., 2015), and dopamine trans-
porter maps (Dukart et al., 2018) for dopamine. All PET 
maps were acquired from healthy volunteers and res-
caled to a minimum of 0 and a maximum of 100; for fur-
ther details, see Dukart et al. (2021).

First, all the above PET maps were resampled from 
3 mm isotropic voxels to 2 mm isotropic voxels using the 
fsl5 [flirt] command. For each node, we then averaged the 
receptor density values in all grey-matter voxels within 
5 mm diameter spheres around each coordinate. Next, 
the node-wise receptor density was correlated (using 
Spearman rank correlation) with within-module degree 
z-score and participation coefficient derived from the 
community organisation. Correlations that displayed at 
least moderate effect size (>+-0.3) in both our discovery 
and replication datasets were then tested against a spa-
tially informed null model for significance using permuta-
tion testing. To this end, we created 1,000 random 
networks by randomly sampling coordinates from a con-
servative grey-matter mask. To mirror the spatial proper-
ties of our impulsivity network in the randomly sampled 
networks, we restricted the minimum, mean, and maxi-
mum Euclidean distance between the sampled nodes to 
be within 1 standard deviation from the impulsivity net-
work’s minimum, mean, and maximum values, respec-
tively. We then calculated the Spearman rank correlation 
between receptor density in nodes of each random net-
work and our empirically derived measures of integration 
and segregation to estimate a null distribution. The 
empirical rank correlation was then compared with the 
estimated null. Correlation coefficients higher than 95% 
of the random correlations were interpreted as signifi-
cant. Scripts used for generating random networks are 
available at https://github​.com​/MartinGell​/random​_nets

3.  RESULTS

3.1.  Meta-analysis

Based on our search criteria, we identified 46 studies 
reporting 72 experiments on DCS and 100 studies 

https://www.fz-juelich.de/inm/inm-7/EN/Resources/_doc/JuSpace.html?nn=2463520
https://www.fz-juelich.de/inm/inm-7/EN/Resources/_doc/JuSpace.html?nn=2463520
https://github.com/MartinGell/random_nets
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reporting 123 experiments on response inhibition. Within 
DCS, 18 experiments reported impulsive responding (of 
which 15 were SS > LL, and 3 “impatient system” β > 
“patient system” δ) and 26 reported controlled respond-
ing (of which 23 were LL > SS, and 3 “patient system” δ 
> “impatient system” β). In total, 24 experiments reported 
correlation with (or parametric modulation of) subjective 
value. Only 4 experiments reported a correlation with the 
discounting parameter k and were, therefore, included in 
the impulsive and controlled responding meta-analyses 
(see methods for details). Within response inhibition, we 
identified 26 experiments that reported activation during 
failed inhibition against baseline/go and 96 experiments 
that reported successful inhibition against baseline/go. 
Finally, only one study reported whole-brain correlations 
with SSRT and was, therefore, excluded from further 
analyses.

3.1.1.  Delayed-consequence sensitivity

Analysis of experiments investigating DCS revealed sig-
nificant findings only for impulsive responding and sub-
jective value contrasts. Impulsive responding (Fig. 2A) led 
to consistent activation of the ventromedial prefrontal 
cortex (VMPFC), left frontal pole (FP), ACC, and bilateral 
ventral caudate extending to the nucleus accumbens 
hereafter referred to as ventral striatum (VS) (Haber, 
2011). Analysis of experiments correlating activity with 
subjective value revealed convergence in a largely over-
lapping network (Fig. 2B). Conjunction analysis revealed 
that left VMPFC, bilateral VS, and right ACC were com-
mon in both meta-analyses. Conversely, contrast analy-
ses showed that only FP was specific to impulsive 

responding, while subcallosal cingulate cortex (scACC) 
and posterior cingulate cortex (PCC) were specific to 
subjective value (Supplementary Figs. S1 and S2). There 
were no converging clusters for experiments testing con-
trolled responding (choices of LL over SS). The exclusion 
of studies that correlated measures of impulsivity such as 
the discount rate k (thus including only the “pure” SS > 
LL and LL > SS contrasts) revealed similar results (Sup-
plementary Fig. S3).

3.1.2.  Response inhibition

Results of the first-level meta-analyses of failed or suc-
cessful inhibition against go and baseline used for meta-
analytical contrast of failed against successful inhibition 
can be found in Supplementary Figure S4 and Figure 4. 
These analyses revealed a widespread network of insular, 
fronto-parietal, and subcortical regions in line with previ-
ous findings (Cieslik et al., 2023). Additionally, we calcu-
lated separate meta-analyses for go/no-go and 
stop-signal tasks, respectively, that showed highly similar 
results indicating that findings were not driven by one 
task (Supplementary Figure S4; Fig. 4). The meta-analytic 
contrast analysis of impulsive responding (failed vs. suc-
cessful inhibition) revealed stronger convergence in 
preSMA, aMCC, the right anterior section of the superior 
frontal gyrus (aSFG), and right supramarginal gyrus 
(SMG) (Fig. 3A, orange-yellow). Stronger convergence for 
controlled responding (successful vs. failed inhibition) 
was found across the lateral frontal and dorsal premotor 
cortex (dPMC) in addition to the right temporal and pari-
etal regions, right anterior insula (aI), and left putamen 
(Fig.  3A, blue). Figure  2B illustrates the conjunction 

Fig. 2.  Delayed-consequence sensitivity. Results of the meta-analysis on brain activity correlates of (A) impulsive 
responding (i.e., preference for smaller sooner rewards) and (B) subjective value. Colour codes z-score.
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analysis across the meta-analyses of failed and success-
ful inhibition against baseline.

3.2.  Network characterisation

To explore the functional organisation of the resulting 
meta-analytic networks, we first investigated potential 
overlap by calculating minimal conjunction and found no 
overlapping regions. Next, we investigated whether the 
response inhibition and delayed-consequence sensitivity 
networks were functionally related by exploring their 
functional connectivity profiles and community structure. 
The nodes that were used for these analyses are dis-
played in Figure  4. For MNI coordinates and complete 
regions labels (see Table 1). An overlay with Yeo et al.’s 
(2011) resting-state networks (Fig. 4B) shows that nodes 
from the DCS meta-analyses were primarily located 

within medial DMN. Combined controlled and impulsive 
responding nodes were mostly found in the dorsal atten-
tion network, while the remaining nodes were distributed 
over fronto-parietal and ventral attention networks. The 
extracted meta-analytic nodes and all result maps are 
available in the ANIMA database: https://anima​.fz​-juelich​
.de​/studies (Reid et al., 2016).

3.2.1.  Community structure

To detect communities within the impulsivity network we 
used the Louvain community detection algorithm (Blondel 
et al., 2008), which divides a network into non-overlapping 
groups of nodes. Using estimates of resting-state FC 
between all network nodes from 528 participants of the 
publicly available Nathan Kline Institute dataset (eNKI) 
(Nooner et al., 2012) as edges, this approach yielded a 

Fig. 3.  Response Inhibition. Results of (A) meta-analytic contrast and (B) conjunction analyses of successful inhibition > 
baseline/go and failure of inhibition > baseline/go contrast meta-analyses.

Fig. 4.  Nodes of the Impulsivity Network. (A) Impulsivity network nodes: Delayed-consequence sensitivity in blue and 
response inhibition in red. Panel (B) displays impulsivity network nodes overlaid over Yeo et al. (2011) resting-state 
networks: visual (purple), somatomotor (blue), dorsal attention (green), ventral attention (pink), limbic (white), fronto-parietal 
(orange), and default mode (red) networks.

https://anima.fz-juelich.de/studies
https://anima.fz-juelich.de/studies
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four-community solution (Fig. 5A). Repeating this proce-
dure 1,000 times, we observed a strong convergence 
across solutions suggesting that our four-community 
solution was not restricted to a local maximum in the 
solution space (Fig.  5B). To evaluate the robustness of 
our findings further, we repeated the community detec-
tion analysis using a different set of 316 unrelated sub-
jects from the Human Connectome Project dataset (HCP) 
(Van Essen et al., 2013) and found an identical commu-
nity structure (Supplementary Fig. S5).

The first fronto-medial community consisted of all 
DCS nodes in the network (VS, VMPFC, ACC, frontal 
pole, PCC, and scACC). Regions related to response 
inhibition were subdivided into three different communi-
ties. In the order of appearance in Figure 5, the first of 
these comprised mostly regions of the so-called salience 
network (Seeley et al., 2007), that is, bilateral and aMCC 
as well as right SFG. The next community spanned 
mainly right-lateralised fronto-parietal regions (IFJ, MFG, 
dPMC, and IPS) as well as preSMA. The last community 

consisted of temporo-parietal regions (bilateral SMG, 
MTG, and pSTS). Interestingly, the cingulo-insular com-
munity was the only community to display positive cou-
pling with regions of both the DCS and response inhibition 
networks.

Finally, we investigated the robustness of the resulting 
communities by a complementary whole-brain analysis. 
Here, principal component analysis of the pair-wise simi-
larity between maps of seed-to-voxel connectivity of the 
meta-analytic nodes was used to explore the dimensions 
along which they were organised in relation to the rest of 
the brain (for scree plot see Supplementary Fig. S6). The 
initial three components that explained the most variance 
showed loadings that were in strong agreement with our 
community detection results, suggesting the node-to-brain 
interactions paralleled node-to-node relationships (Fig. 5C). 
The first principal component showed that DCS nodes 
(except VS) displayed affinity in their connectivity with the 
rest of the brain while being dissimilar to the response 
inhibition regions. Similar properties were observed for the 
cingulo-insular, fronto-parietal, and temporo-parietal com-
munities along the second and third gradient revealing the 
closeness of within-community nodes in their whole-brain 
connectivity profiles. Results did not differ with varying 
sparsity or decomposition parameters.

3.2.2.  Network organisation related  
to receptor density

Finally, we examined whether network organisation was 
associated with neurotransmitters related to impulsivity 
across dimensions (Dalley & Robbins, 2017). In particular, 
given our systems approach, we were interested whether 
the interactions between network nodes within and 
between communities are related to dopamine and  
serotonin receptor density as well as norepinephrine 
transporter density derived from PET imaging. Network 
organisation was assessed using two graph-theoretical 
measures: (i) within-module degree z-score, a measure of 
how well a node is connected to other nodes in its com-
munity, and (ii) participation coefficient, a measure of how 
well a node is connected to other modules (Guimerà & 
Nunes Amaral, 2005). Only serotonin 5HT1a receptor 
density showed a positive relation to within-module 
degree z-score in both samples (eNKI: ρ = 0.49, p = 0.015; 
HCP: ρ  =  0.64, p  =  0.002), suggesting that node-wise 
serotonin expression was related to within-module inte-
gration (Fig. 6).

4.  DISCUSSION

The present study investigated brain networks associated 
with two dimensions of impulsivity, response inhibition, 

Table 1.  Meta-analytic nodes.

Region (abbreviation) Hemisphere

MNI  
coordinate

x y z

Ventral striatum (VS) Left -8 10 0
Ventromedial prefrontal  
cortex (VMPFC)

Left -4 44 -8

Ventral striatum (VS) Right 10 12 -2
Anterior cingulate cortex 
(ACC)

Right 8 42 10

Frontal pole (FP) Left -10 62 18
Subcallosal cingulate  
cortex (scACC)

2 30 -6

Posterior cingulate  
cortex (PCC)

-2 -38 28

Anterior insula (AI) Left -38 20 -8
Anterior insula (AI) Right 32 22 -10
Pre-supplementary motor 
area (preSMA)

Right 4 18 48

Supramarginal gyrus (SMG) Right 60 -42 28
Supramarginal gyrus (SMG) Left -60 -44 36
Middle temporal gyrus (MTG) Right 54 -30 -6
Superior frontal gyrus (SFG) Right 24 54 28
Anterior midcingulate cortex 
(aMCC)

0 24 24

Inferior frontal junction (IFJ) Right 48 8 26
Middle frontal gyrus (MFG) Right 40 44 14
Posterior superior temporal 
sulcus (pSTS)

Right 58 -48 14

Intraparietal sulcus (IPS) Right 40 -40 46
Posterior middle temporal 
gyrus (pMTG)

Left -58 -52 12

Dorsal premotor cortex 
(dPMC)

Right 38 0 54

MNI—Montreal Neurological Institute.
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and DCS, and provides a comprehensive and fine-
grained characterisation of the neural correlates based 
on task activation, connectivity, and neurochemistry. 
Using ALE meta-analyses of task-based fMRI studies, we 
provide evidence for two distinct functional systems: one 
centred in the medial prefrontal cortex, ventral striatum, 
and posterior cingulate cortex involved in DCS, and the 
second covering right lateral frontal cortex, temporo-
parietal regions, anterior insula, and anterior midcingu-
late cortex subserving response inhibition. Community 
detection based on resting-state functional connectivity 
between all meta-analytically derived nodes in two large 
independent samples revealed four functional communi-

ties. The fronto-medial community included all DCS 
regions corroborating their dissociation from the other 
system. Response inhibition, in turn, was fractionated 
into three networks spanning fronto-parietal, temporo-
parietal, and cingulo-insular regions. Lastly, the integra-
tion of individual nodes within those communities 
calculated in two independent datasets was associated 
with serotonin receptor density.

4.1.  Two systems

The results of our meta-analyses indicate that response 
inhibition and DCS dimensions of impulsivity differ not 

Fig. 5.  Impulsivity Network Communities. Panel (A) shows connectivity-based communities in the discovery sample 
(eNKI). The agreement matrix in panel (B) displays the consensus across 1,000 repetitions of the community detection. 
Legend refers to the proportion of overlapping community solutions. Seed-voxel connectivity gradients are displayed in 
panel (C). For a 3D depiction of the three components in (C) see: https://github​.com​/MartinGell​/Impulsivity​_networks

https://github.com/MartinGell/Impulsivity_networks
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only in terms of their behavioural manifestations (MacKillop 
et al., 2016; Sharma et al., 2014; Stahl et al., 2014) but also 
on the neural level. Mirroring the behavioural dichotomy, 
we found two distinct sets of regions involved in each 
dimension. The network of regions associated with DCS 
was mainly localised within the DMN (Raichle, 2015; 
Owens et al., 2017), while response inhibition covered the 
multiple-demand network (Duncan, 2010; Langner et al., 
2018; Müller et al., 2015). These findings directly support 
theoretical accounts proposing separate functional sys-
tems for individual impulsivity dimensions (Strickland & 
Johnson, 2021) and agree with findings on delay discount-
ing (Frost & McNaughton, 2017; Noda et  al., 2020) and 
response inhibition (Cieslik et  al., 2023; R. Zhang et al., 
2017). The current work now provides a more fine-grained 
overview by differentiating controlled and impulsive pro-
cessing within each dimension and considering both in 
the final network definition. Interestingly, we found no con-
vergence in the dlPFC for the contrast, reflecting a prefer-
ence for larger later rewards in the DCS meta-analysis that 
has been posited by previous literature (Hamilton, Mitchell, 
et al., 2015; Noda et al., 2020; Owens et al., 2017; Schüller 
et al., 2019) and have, therefore, found no evidence of an 
overlapping prefrontal control system across the two 
dimensions. While some individual studies reported acti-
vations within this region (e.g., McClure et al., 2004), a pre-
vious meta-analysis by Schüller et  al. (2019) reported a 
convergence across seven studies which is most likely too 
low to delineate stable results (Müller et al., 2018).

Within the framework of response inhibition, impulsiv-
ity has been described as an impairment in executive 
functioning (with inhibitory control being one of the major 
executive functions), while from the delayed-gratification 

perspective, impulsivity has been more associated with 
motivational processes that underlie decision-making 
(Bari & Robbins, 2013; Stahl et al., 2014). In line with this, 
the regions related to DCS identified here, especially 
vmPFC and ventral striatum, have been previously impli-
cated in value-based decision-making (Haber & Knutson, 
2010; Rangel & Hare, 2010). Similarly, regions related to 
response inhibition have been classically associated with 
executive functions (Camilleri et al., 2018; Duncan, 2010; 
Langner et al., 2018). These functional differences echo 
behavioural findings. Performance on response inhibition 
and delay discounting tasks is differentially related to 
treatment outcomes of impulsivity-related disorders 
(Sheffer et  al., 2012; Stevens et  al., 2014), impulsive 
behaviours such as reactive aggression or drug taking 
(Sharma et al., 2014), and to pharmacological intervention 
(Worbe et al., 2014; Winstanley et al., 2004). For instance, 
after reviewing the literature, Stevens et al. (2014) con-
cluded that retention and treatment success in addiction, 
a condition believed to be strongly related to impulsivity 
(de Wit, 2009; Dick et al., 2010), were likely related to per-
formance in monetary incentive delay tasks, but not to 
commission errors in response inhibition. The present 
findings, therefore, show that behavioural differentiation 
between the two dimensions is also mirrored on the neu-
ral level by the involvement of two distinct neurocognitive 
systems.

4.2.  Four communities

Activity within the response inhibition and DCS networks 
has been linked to both behavioural (Aron & Poldrack, 
2006; Hariri et al., 2006; Q. Wang et al., 2016) and clinical 

Fig. 6.  Association of community organisation with serotonin receptor 5HT1a. Panel (A) shows the relationship between 
within-module degree z-score (high scores indicate within-network integrator regions) and 5HT1a receptor in the discovery 
(left) and replication sample (right). Panel (B) displays permutation-derived null distributions of correlation coefficients 
(Spearman’s rho) between receptor density and within-module degree z-score in the discovery sample (top) and 
replication sample (bottom). Observed correlation is marked with a red line and the significance level of 0.05 is indicated 
by a grey line.



14

M. Gell, R. Langner, V. Küppers et al.	 Imaging Neuroscience, Volume 2, 2024

(Stevens et  al., 2014) variability. However, to develop 
markers of psychopathology, interactions within and 
between large-scale systems are essential (Bassett et al., 
2018; Castellanos et  al., 2013). Moreover, co-occurring 
deficits in both response inhibition and steeper delay dis-
counting within the same individual in conditions like 
addiction and ADHD are not uncommon (Bickel et  al., 
2012; Castellanos-Ryan et  al., 2014; Ioannidis et  al., 
2019; Yücel et al., 2019). Thus, the two networks identi-
fied here cannot account for most impulsivity-related 
variability in isolation. A systems perspective that consid-
ers both within- and between-system interactions may 
be necessary to bridge this gap. To this end, we used 
resting-state functional connectivity between the meta-
analytic nodes as well as between the nodes and the rest 
of the brain to identify their community organisation 
based on their intrinsic coupling patterns. Supporting our 
meta-analytic findings, the fronto-medial community 
comprised all DCS regions, suggesting tight integration. 
Conversely, response inhibition regions split into three 
communities (cingulo-insular, temporo-parietal, and 
fronto-parietal) that strongly resemble previous reports 
(Camilleri et al., 2018; Langner et al., 2018).

The fronto-parietal community corresponded to 
regions within the dorsal attention (IFJ, dPMC, IPS) and 
fronto-parietal (preSMA, MFG) resting-state networks 
(Yeo et al., 2011). The dorsal attention network is believed 
to subserve top-down control of visuospatial attention 
(Corbetta & Shulman, 2002), including attentional shifting 
(Kelley et  al., 2008), while the preSMA has been impli-
cated in cognitive control (Cole et al., 2013) and motor 
preparation (Kennerley et al., 2004). Directing attention to 
expected and relevant stimuli and intentionally enhancing 
the processing of these stimuli when they occur sub-
served by the DAN may thus enable the appropriate initi-
ation or inhibition of actions when appropriate (such as 
when a stop or no-go signal appears). Except for the right 
MTG (located in the DMN), the temporo-parietal commu-
nity (bilateral SMG and STS) covered regions located in 
the posterior ventral attention network. The TPJ, which 
covers most of the community, has been argued to 
underlie contextual updating more generally (Geng & 
Vossel, 2013) and updating responses from action exe-
cution to action inhibition during the stop-signal task 
more specifically (Cieslik et  al., 2015). Thus, inefficient 
updating or transfer of updated information to motor 
regions via preSMA may result in slower responses or 
failures of inhibition commonly observed in high-impulsive 
individuals (Bari & Robbins, 2013).

The last community displayed tight interactions 
between the anterior insula, aMCC, and aSFG, which have 
been previously described as the salience network (SN) 
(Gordon et al., 2017; Seeley et al., 2007). The SN has been 

associated with detecting important or salient stimuli 
(Seeley et al., 2007), and is believed to initiate control sig-
nals and facilitate switching between higher-order net-
works (Goulden et al., 2014; Menon & Uddin, 2010). We 
observed positive associations between the cingulo-
insular community and both the fronto-parietal and 
temporo-parietal communities supporting its role as a 
control element within the response inhibition network (for 
a similar account, see Camillieri et al., 2018). In action inhi-
bition specifically, such top-down signals likely originate 
from the aMCC which has been previously linked to error 
monitoring (Ullsperger et al., 2014) and may be crucial to 
inhibitory planning in the preSMA that displayed a strong 
association with it. Taken together, by facilitating attention, 
control, updating, and action planning, the three commu-
nities together likely produce the required behaviour: to 
enact or inhibit an impulsive response tendency.

The cingulo-insular community also displayed a posi-
tive association with the DCS subsystem. These results 
are in line with models of the salience network as a con-
trol element mediating the dynamic interactions between 
DMN and fronto-parietal networks to facilitate goal-
directed behaviour (Menon, 2011). Similarly, the cingulo-
insular community may play a role in coordinating the 
fronto-medial and fronto-parietal communities. Aberrant 
interactions between the fronto-parietal networks, DMN, 
and SN (i.e., the triple network model) (Menon, 2011) 
have been proposed to underlie a number of psychiatric 
disorders. It is thus not unlikely that impulsivity, itself a 
transdiagnostic marker (Berlin & Hollander, 2014), is 
related to the functional integrity of the cingulo-insular, 
fronto-medial, and fronto-parietal communities. Support-
ing this, connectivity between these large-scale systems 
has been associated with discounting rate (Chen et al., 
2018), ADHD (Cai et al., 2018), addiction (L. Wang et al., 
2017; R. Zhang & Volkow, 2019), and impulsive symptoms 
in Parkinson’s disease (Koh et al., 2020). Similarly, find-
ings of aberrant connectivity between the dlPFC (part of 
the fronto-parietal subsystem) and ventral striatum (part 
of the delay sensitivity subsystem) in substance use dis-
order (Ersche et al., 2020; Jollans et al., 2016) and patho-
logical gambling (Koehler et  al., 2013) may be in part 
explained by a dysfunctional salience control subsystem. 
As such, inappropriate disengagement of either the 
fronto-parietal or fronto-medial communities during task 
execution may result in apparent connectivity changes 
between them and influence behaviour (Liang et al., 2016; 
Shine & Poldrack, 2018). Taken together, we propose the 
multi-dimensional construct of impulsivity is associated 
with a broad network including default mode, fronto-
parietal, temporal, and subcortical regions that can be 
distinguished into four communities. Interactions between 
these communities suggest that the entire network is 
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ultimately involved in the final behavioural phenotype of 
impulsivity.

4.3.  Neurochemistry

To investigate the biological relevance of the identified 
community organisation, we explored the relationship 
between integration and segregation of the impulsivity 
network with the receptor/transporter density of three 
impulsivity-related transmitter systems of the brain. 
These analyses revealed that within-community integra-
tor regions display a higher density of the serotonin 
5HT1a receptor, suggesting that integration within com-
munities may be modulated by available serotonin. Evi-
dence of serotonin involvement in different impulsivity 
dimensions is mixed, with the strongest evidence impli-
cating it in response inhibition (Dalley & Robbins, 2017). 
There is ample evidence for an inverse association 
between serotonin levels and aggression, a behavioural 
manifestation of impulsivity (Carhart-Harris & Nutt, 2017; 
da Cunha-Bang & Knudsen, 2021; Duke et  al., 2013). 
Specifically, 5HT1A/1B receptor agonists have been 
shown to reduce aggressive behaviour in many species 
including humans (Cleare & Bond, 2000; de Boer & 
Koolhaas, 2005; Popova et al., 2007; Sperry et al., 2003), 
while reduction in firing has been associated with 
increased aggression (Audero et  al., 2013). Activation 
within regions that exhibited high within-community inte-
gration like the anterior insula and medial PFC has been 
previously proposed to regulate aggression (Blair et al., 
2021). The present findings, therefore, indicate that sero-
tonergic modulation of behaviours such as aggression 
might be associated with facilitated integration within 
communities. Interestingly, neither the norepinephrine 
transporter nor dopamine receptor density was found to 
be related to functional network organisation. Our results 
thus indicate that the mechanism of action of norepi-
nephrine and dopamine on function may not be through 
altering network integration or segregation, warranting 
further investigation.

4.4.  Limitations and outlook

Importantly, the present investigation could only evaluate 
brain networks related to response inhibition conceptual-
ised as the contrast between failed and successful stop-
ping and DCS as the contrast between choices of 
rewards. We were not able to identify enough studies to 
independently evaluate associations between activation 
and the discounting parameter k or SSRT, which have 
been used as operationalisation of impulsivity in non-
imaging studies (Ioannidis et al., 2019). While neuroimag-
ing studies of brain–behaviour relationships with k are in 

general rare, associations with SSRT are typically investi-
gated with regions of interest approach, which is unsuit-
able for ALE meta-analyses (Müller et  al., 2018). Given 
that regions of interest were often selected from signifi-
cant clusters of activations in the specific contrasts that 
we meta-analysed, such as successful inhibition versus 
go (Manza et  al., 2016; Osada et  al., 2019; Xu et  al., 
2022), the networks reported in our meta-analyses will 
mostly overlap with regions commonly showing specific 
correlation with SSRT. Furthermore, evidence from stud-
ies using electrocorticography that has a higher spatio-
temporal resolution than fMRI suggests that activity in 
the right inferior frontal cortex is crucial for both the pro-
cess of stopping and its latency (Aron et al., 2014). The 
inferior frontal cortex was a locus of multiple clusters of 
convergence across studies in our successful inhibition 
versus go meta-analysis, thus suggesting the response 
inhibition networks identified here may also support 
latency of stopping. However, in order to facilitate more 
comprehensive meta-analyses of the processes underly-
ing response inhibition and DCS and in particular impul-
sivity, future work ought to report (or provide) also results 
that are not the primary focus of interest (e.g., whole-
brain contrasts when investigating ROIs).

The present investigation focused on neural respond-
ing during the execution of cognitive tasks measuring 
impulsivity. It, therefore, does not warrant any conclusions 
on the relationship between brain activity and self-report 
measures of impulsivity, as questionnaire-derived trait 
assessments often demonstrate limited correlations with 
performance-based assessments of impulsivity (Sharma 
et al., 2014). Future work may investigate whether indi-
vidual differences in trait impulsivity relate to the network 
identified here. In the present work, we focused on the 
two best-characterised dimensions of impulsivity that 
were also most commonly investigated with fMRI. Some 
models suggest sustained attention (the ability to keep 
one’s attention focused over time) and risk taking as 
additional components of impulsivity (Strickland & 
Johnson, 2021); however, there is substantial variance in 
proposed behavioural assessments. A meta-analysis of 
fMRI studies investigating sustained attention by Langner 
and Eickhoff (2013) has reported activations in regions 
largely overlapping with those identified here in the 
response inhibition network. Risky behaviours rarely play 
a substantial role in theoretical models of impulsivity and 
have been measured using the probability discounting 
task and Balloon Analog Risk Task (Lejuez et al., 2002). 
fMRI investigations during these tasks have revealed 
regions within the DCS network and parts of the multiple 
demand network (Miedl et  al., 2012; Peters & Büchel, 
2009; Schonberg et al., 2012; Seaman et al., 2018), sug-
gesting overlapping activation with regions found in our 
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meta-analyses. Therefore, the network described here 
may provide a largely comprehensive description of the 
neurocircuitry associated with the multi-dimensional 
construct of impulsivity.

5.  CONCLUSIONS

Taken together, our findings reinforce insights from pre-
vious behavioural research and provide substantial evi-
dence for the multi-dimensional nature of impulsivity on 
the neural level. In particular, we identified and charac-
terised two non-overlapping neurocognitive systems 
linked to processes underlying impulsive and controlled 
decision-making and action control. Each of these was 
centred in a distinct large-scale network of brain organi-
sation. The first was located in the default-mode network 
associated with value-based judgements and goal-
directed decision-making, the second was distributed 
across higher-order networks related to executive func-
tions of action selection, planning, and updating. These 
systems were found to be organised into four specialised 
communities of medial frontal, cingulo-insular, fronto-
parietal, and temporal regions. Interactions between 
the  communities and their coordination may affect the 
impulsivity of our behaviour and decision-making, with 
the modulation of community integration by serotonin 
emerging as a possible mechanism. Overall, our findings 
underscore the necessity for a comprehensive dimen-
sional ontology encompassing symptoms, cognitive 
processes, and neural systems to effectively address 
impulsivity in a transdiagnostic manner (Berlin & Hollander, 
2014). The research domain criteria framework of the 
NIH (Insel et al., 2010) has already taken steps in such a 
direction, with reward valuation and response selection/
inhibition forming two separate components—but only 
the latter refers to impulsivity. Such developments, how-
ever, have yet to penetrate clinical research and practice.
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