001030944 001__ 1030944
001030944 005__ 20250129092500.0
001030944 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-05535
001030944 037__ $$aFZJ-2024-05535
001030944 041__ $$aEnglish
001030944 1001_ $$0P:(DE-Juel1)188965$$aSalwa, Yasmeen Neyaz$$b0$$eCorresponding author
001030944 1112_ $$aXLIV- Dynamic Days conference 2024$$cBremen$$d2024-07-28 - 2024-08-02$$gDDE 2024$$wGermany
001030944 245__ $$aExploring Coupled Oscillator Networks with Highly-Configurable Integrated Circuit Designs
001030944 260__ $$c2024
001030944 3367_ $$033$$2EndNote$$aConference Paper
001030944 3367_ $$2BibTeX$$aINPROCEEDINGS
001030944 3367_ $$2DRIVER$$aconferenceObject
001030944 3367_ $$2ORCID$$aCONFERENCE_POSTER
001030944 3367_ $$2DataCite$$aOutput Types/Conference Poster
001030944 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1733819021_10607$$xAfter Call
001030944 502__ $$cUniversity of Duisburg Essen
001030944 520__ $$aThe analysis of the complex dynamics of coupled oscillator networks is crucial not only for the understanding of corresponding systems in biology (i.e., brain dynamics) but also for our technical world (e.g., the stability of power grids). Moreover, this knowledge paves the way to use coupled oscillator systems for bio-inspired computing. Both analytical methods and, in particular, numerical simulations have provided fundamental insights into the existence and coexistence of synchronization states and different symmetry breaking in completely symmetrical oscillator networks such as chimera states or solitary states [1]. For example, the influence of the coupling strength and the phase shift in the coupling on the network dynamics was investigated in detail [2]. However, despite the computing power of modern computers available today, there are limits to analyzing very large networks and their transient or adaptive dynamic over very long periods using numerical simulations. A way to overcome these restrictions is to perform experiments with physical implementations of large-scale coupled oscillator systems using state-of-the-art integrated circuit technology. Most of the recently presented developments focus on bio-inspired computing applications and thus are rather restricted concerning the configurability of network topology and coupling terms [3]. To mimic the response of real-world oscillatory networks like power grids to varying external and internal conditions, one needs to be able to change coupling topology and coupling terms of the physical implemented during the experiment, i.e., ‘on the fly’. In our proposed integrated circuit system designed in a 28 nm CMOS technology, we employ an architecture, organizing oscillators into clusters with adjustable all-to-all coupling within each cluster. A high level of configurability allows for programmable coupling terms (phase shift and coupling strength) within and between the clusters. The oscillators are realized by type 2 Phase Locked Loop (PLL) circuits of third order. The voltage-controlled oscillators (VCOs) are implemented using ring oscillators, which are well-known standard CMOS building blocks. The connectivity among the PLLs is studied with two alternative approaches, either by employing multiple phase and frequency detectors (PFD) and logic gates leading to the charge pump node or with multiple charge pumps directed towards a VCO node. The eigenfrequency of the nodes can be configured individually, typically lying in the range of 10 MHz. External inputs can be fed into dedicated nodes by either modulating the frequency or initialization of phrases of the controlled oscillators. The system dynamics are determined during operation in terms of phase and frequency synchronization within and between the clusters and this information is available in real-time, e.g., for control purposes. The proposed system is very well suited for exploring the complex long-term dynamics of large-scale oscillator networks.[1] Maistrenko, Y., Penkovsky, B., & Rosenblum, M.; Physical Review E (2014).[2] Ebrahimzadeh, P., Schiek, M., & Maistrenko, Y.; CHAOS (2022)[3] Csaba, G., & Porod, W.; Applied physics reviews (2020)
001030944 536__ $$0G:(DE-HGF)POF4-5234$$a5234 - Emerging NC Architectures (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001030944 536__ $$0G:(DE-82)BMBF-16ME0398K$$aBMBF 16ME0398K - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC II - (BMBF-16ME0398K)$$cBMBF-16ME0398K$$x1
001030944 65017 $$0V:(DE-MLZ)GC-1601-2016$$2V:(DE-HGF)$$aEngineering, Industrial Materials and Processing$$x0
001030944 7001_ $$0P:(DE-Juel1)133935$$aSchiek, Michael$$b1
001030944 7001_ $$0P:(DE-Juel1)176328$$aAshok, Arun$$b2
001030944 7001_ $$0P:(DE-Juel1)159350$$aGrewing, Christian$$b3
001030944 7001_ $$0P:(DE-Juel1)198649$$aEbrahimzadeh, Pezhman$$b4
001030944 7001_ $$0P:(DE-Juel1)145837$$aZambanini, Andre$$b5
001030944 7001_ $$0P:(DE-Juel1)142562$$avan Waasen, Stefan$$b6
001030944 8564_ $$uhttps://juser.fz-juelich.de/record/1030944/files/pdf_poster_dde.pdf$$yOpenAccess
001030944 8564_ $$uhttps://juser.fz-juelich.de/record/1030944/files/pdf_poster_dde.gif?subformat=icon$$xicon$$yOpenAccess
001030944 8564_ $$uhttps://juser.fz-juelich.de/record/1030944/files/pdf_poster_dde.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001030944 8564_ $$uhttps://juser.fz-juelich.de/record/1030944/files/pdf_poster_dde.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001030944 8564_ $$uhttps://juser.fz-juelich.de/record/1030944/files/pdf_poster_dde.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001030944 909CO $$ooai:juser.fz-juelich.de:1030944$$pdriver$$pVDB$$popen_access$$popenaire
001030944 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188965$$aForschungszentrum Jülich$$b0$$kFZJ
001030944 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133935$$aForschungszentrum Jülich$$b1$$kFZJ
001030944 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176328$$aForschungszentrum Jülich$$b2$$kFZJ
001030944 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159350$$aForschungszentrum Jülich$$b3$$kFZJ
001030944 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)198649$$aForschungszentrum Jülich$$b4$$kFZJ
001030944 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145837$$aForschungszentrum Jülich$$b5$$kFZJ
001030944 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142562$$aForschungszentrum Jülich$$b6$$kFZJ
001030944 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5234$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001030944 9141_ $$y2024
001030944 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001030944 920__ $$lyes
001030944 9201_ $$0I:(DE-Juel1)ZEA-2-20090406$$kZEA-2$$lZentralinstitut für Elektronik$$x0
001030944 9201_ $$0I:(DE-Juel1)PGI-14-20210412$$kPGI-14$$lNeuromorphic Compute Nodes$$x1
001030944 9801_ $$aFullTexts
001030944 980__ $$aposter
001030944 980__ $$aVDB
001030944 980__ $$aI:(DE-Juel1)ZEA-2-20090406
001030944 980__ $$aI:(DE-Juel1)PGI-14-20210412
001030944 980__ $$aUNRESTRICTED
001030944 981__ $$aI:(DE-Juel1)PGI-4-20110106