
Development and Application of a FIWARE-based
ICT-Platform for Multi-Energy Systems on Building

and District Level
Lidia Westphal∗, Marcel Schröder∗, Daniele Carta∗ , André Xhonneux∗ , Andrea Benigni∗,†,‡

and Dirk Müller∗,†

∗Forschungszentrum Jülich GmbH, Energy Systems Engineering (ICE-1), Jülich 52425, Germany
†RWTH Aachen University, Aachen 52056, Germany

‡JARA-Energy, Jülich 52425, Germany

Abstract—The integration of volatile, renewable energies into
building and district energy systems requires novel algorithms
that are capable of controlling the augmented complexity and the
interactions of subsystems efficiently. Local energy communities
will consist of a multitude of different small and large scale
components using a variety of communication protocols. A reli-
able communication among the heterogeneous components is of
utmost importance. In this regard, information and communica-
tion technology (ICT) platforms are implemented to collect data
from the field devices and coordinate the various components.
At Forschungszentrum Jülich (FZJ), in the framework of the
Living Lab Energy Campus (LLEC) project, a FIWARE-based
ICT cloud platform has been developed to gather field data from
the energy demonstrators, store them and make them available
for control solutions and other applications. In this paper, the
architecture and the components of the LLEC ICT platform
are described. The implemented solutions are motivated by the
needs underlined by the demonstrators in the LLEC project, but
easily transferable to other similar setups. Finally, exemplary
applications that make use of the proposed ICT platform are
presented, to showcase the flexibility of the platform.

Index Terms—Building automation, Building management sys-
tems, Cloud computing, FIWARE, Information and communica-
tion technology, Open source software

I. INTRODUCTION

Despite ongoing major efforts to slow down global warm-
ing, annual CO2 emissions continue to increase steadily [1].
Cities account for over 70 % of global use and, 40 to 50
% of greenhouse gas emissions worldwide [2]. Consequently,
there exists an urgent imperative for implementing energy-
saving strategies. Optimizing the operation of building and
district energy systems presents considerable potential for
achieving energy savings. At the same time, there is a need to
integrate volatile, decentralized renewable energy and waste
heat sources into the existing energy systems, which leads to
a coupling of the thermal and electrical sectors, for example,
which significantly increases complexity. Advanced control
algorithms, like for instance model predictive control (MPC),
form a promising solution in addressing this complexity and
raise efficiency. In literature, savings of about 20 % to 30 %
are reported for the building sector [3]. Regularly, these ad-

vanced control algorithms require comparatively high comput-
ing power which is often not available on-site. External cloud
systems form a promising solution since they can provide
the necessary computing power and storage capacities for
execution, offering scalable and flexible solutions to manage
the complexities of energy systems. By shifting computational
tasks to external cloud systems, automation systems can lever-
age advanced algorithms, without overburdening local hard-
ware resources. This approach not only enhances the efficiency
and effectiveness of control strategies but also facilitates seam-
less integration, e.g., of data analytic tools, and allows sharing
of data with users, fostering greater transparency and user
engagement in energy management. Through intuitive user in-
terfaces and personalized dashboards, building occupants can
access (near) real-time and historical data about their energy
usage, indoor climate conditions, and system performance.
Currently, a diverse range of commercial Internet of Things
(IoT) platforms are available, provided by various companies
and cloud service providers. Notable examples include AWS
(Amazon Web Services) IoT, Microsoft® Azure IoT, and
numerous others. Nevertheless, open-source Information and
Communication Technology (ICT) platforms offer a flexible,
transparent and cost-effective alternative, making them an
attractive option for a wide range of IoT deployments and
applications. At the beginning of LLEC, a prototypical ICT
setup was successfully implemented and operated without the
use of a dedicated middleware. For example, a model-based
room controller [4] and dashboard suite [5] were deployed over
a longer period of time using this setup. Nevertheless, during
operation it became once more clear, that without a dedicated
middleware layer, managing and orchestrating interactions
between devices becomes complex and cumbersome, leading
to increased development time and effort [6]. FIWARE [7]
is a notable example of an open-source middleware solution.
Developed as part of the FIWARE project, it provides a
comprehensive set of tools and components for developing and
managing IoT solutions. Notably, FIWARE stands out for its
agnostic approach, offering standardized APIs, data models,
and protocols that facilitate interoperability across diverse

https://orcid.org/0000-0002-0182-8710
https://orcid.org/0000-0001-5399-2363
https://orcid.org/0000-0002-2475-7003
https://orcid.org/0000-0002-6106-6607


devices, sensors, and applications. In recent years, multiple
FIWARE-based setups have been proposed, e.g. [8], [9]. In a
few cases, a quick setup is made available1. Nevertheless, in
most cases, such a deployment kit is not publicly available and
considerable time must be invested again for the configuration
of the components needed. In this work, we introduce a
state-of-the-art customized ICT-platform built on FIWARE
technology, tailored specifically for applications within the
building and district energy system domain which. Even tough
it was initially developped within the context of the LLEC at
FZJ, the setup applies for similar setups. To facilitate seamless
deployment, we have developed and released an open-source
deployment kit for the proposed stack.

II. CONSIDERED FRAMEWORK

In 2018, at Forschungszentrum Jülich (FZJ), the Living Lab
Energy Campus (LLEC) project was initiated, with the aim of
transforming the campus of the research center into a living
lab2 [10]. Under this framework, several energy demonstrators
for the generation, conversion and storage of energy in various
forms, an extensive number of sensors and actuators, and an
ICT infrastructure are being integrated to create the ideal test-
bed for future multi-modal energy systems [10]. In this section,
the various software components integrated in this framework
are introduced.

A. Living Lab Energy Campus (LLEC)

LLEC builds on top of the already existing infrastructure of
the FZJ campus, which covers an area of 1.7 square kilometres,
with more than 150 buildings, where various activities are
conducted, as well as test facilities and laboratories, like the
Jülich Supercomputing Centre (JSC). By adding various large-
scale energy demonstrators for the generation, conversion and
storage of renewable energies, as well as a dedicated measure-
ment infrastructure for research purposes, the resulting setup
forms a test-bed for testing and validating novel hardware and
software solutions under real-world conditions [10]. Figure 1
shows a schematic overview of LLEC’s energy demonstrators.

Climate neutral 
office building

PV installations

LOHC storage

Low-temperature
district heating network

Combined heat and power
plant with H2 co-firing

Li-Ion Battery 
Energy storage

Electrolyser Bi-directional
charging station

> 500 rooms in 15 buildings

Sensors / Actuators

> 60 Power quality analyzers

Fig. 1. Overview of energy demonstrators, which are part of the LLEC.

1https://github.com/RWTH-EBC/FIWARE-STACK
2in German, also known as “Reallabor”

The waste heat of one water-cooled supercomputer will
soon be used to supply heat to surrounding buildings via a
low-temperature district heating network (LTDH), by means
of heat pumps controlled by a cloud-based MPC algorithm.
More than 15 buildings have been equipped with various
actuators and sensors for both monitoring and control purposes
[11]. They exchange data to a cloud-based room controller to
provide comfortable offices with minimal energy demand. The
controller considers the occupant’s preferences and anticipated
presence in the office, which is entered by the users via
the web-based user interface JuControl. In addition to the
installation of a large photovoltaic (PV) field, with a peak
power of 1.1MW, around the campus, many small PV systems
have been installed on the roofs of the buildings, or as facade-
integrated photovoltaics. To provide storage for intermittent
energy generated, two battery energy storage (BES) systems
have been also installed on campus. The first is a high-energy
Megapack BES from Tesla (0.5MW/ 2.5MWh). The second
is a high-power BES from Riello (1.5MW / 0.5MWh) which
is also used as an uninterruptible power supply (UPS) to
ensure continuous supply to a dedicated building. Close to
this BES two bi-directional charging stations from Nex2, with
nominal power of 250 and 250 kW respectively, have been
installed to study vehicle-to-grid applications. Furthermore,
the LLEC setup foresees a hydrogen infrastructure, featuring a
test facility for electrolyzer stacks, a liquid organic hydrogen
carrier (LOHC) storage and the possibility of co-firing of
hydrogen in a combined heat and power plant.

B. FIWARE

As mentioned above, in the LLEC project we process data
from various sources which communicate via various proto-
cols, e.g., Modbus [12], OPC UA (Open Platform Communi-
cations Unified Architecture) [13], MQTT (Message Queuing
Telemetry Transport) [14], and more. Collected data are stored
as time series, with related metadata, in a homogeneous,
secure and reliable way. These homogenized data must be
accessible via well-defined interfaces for further processing or
visualisation. Thus, an IoT (Internet-of-Things) middleware is
required to manage data storage and communication between
devices and applications. Furthermore, for scalability and
reliability reasons this IoT middleware has to be cloud-based.

Nowadays there is a variety of commercial IoT platforms
offered by different companies and cloud providers such as
AWS (Amazon Web Services) IoT, Microsoft® Azure IoT
and others. However, due to internal project requirements, an
on-premises solution which could be deployed on our private
cloud was needed. For these reasons, we chose FIWARE [7]
which is an open-source framework providing components and
standard architectures for smart solutions in different domains.
FIWARE offers a catalogue of open-source components which
are based on REST (representational state transfer), interoper-
able and can be combined according to the projects’ needs.
These components are built on top of mature and widely
used databases (e.g., MongoDB [15], TimescaleDB [16], and
the like), and support various standard IoT protocols, such



as MQTT, OPC-UA, AMQP (Advanced Message Queuing
Protocol) [17] and many others.

In the following sections, we describe our ICT Platform
employing FIWARE components for data storage and data
exchange, the underlying hardware infrastructure as well as
frameworks and software required for robust, secure and
scalable cloud-based middleware for multi-energy building and
district energy systems.

III. ICT PLATFORM

A. Infrastructure

The reliable and secure operation of LLEC’s FIWARE-
based ICT platform and additional services requires a stable
setup of hardware and software. IT-Services of Forschungszen-
trum Jülich (FZJ) operates an OpenStack cluster [18] as a
virtualization infrastructure which provides the ability to run
Virtual Machines (VMs). While the ICT platform is, in gen-
eral, agnostic to the hardware or virtualization infrastructure it
is running on, using OpenStack simplifies the administrative
overhead for the users.

The services provided by the ICT platform are container-
ized, therefore a container orchestration system is required. We
decided to use Docker Swarm [19] for this because of its ease
of set-up and maintenance. This allows us to create a cluster of
3 or more VMs running the ICT-Platform, with Docker Swarm
providing failover mechanisms to automatically reassign ser-
vices from failed nodes to healthy ones within the cluster.

To properly run a Docker Swarm cluster additional require-
ments have to be fulfilled. To ensure the availability of the ICT
platform in case of failure of a VM it is important to provide
a unique external IP, or Domain Name System (DNS) name,
for all VMs of the cluster. For this purpose, we utilise the load
balancer capability natively provided by OpenStack. Neverthe-
less, alternative solutions such as Keepalived [20] or round-
robin DNS can be used instead. In general, it is advisable to
provide a mechanism to map meaningful DNS names derived
from the cluster name to the ports where services are actu-
ally running, e.g., redirecting my-http-service.cluster.domain
to cluster.domain:80. This way one does not need to publish
the ports of each service and gains flexibility in case the ports
are changed. This can be achieved by using an appropriately
configured reverse proxy.

Some services of the ICT platform (like MongoDB) require
storage to save their data. Docker Swarm does not have any
capability to provide a single logical storage volume and
make it available to the whole cluster. Thus, if a service
containing data or requiring configuration fails on one VM,
its data will be unavailable on the other VMs. Therefore, the
service will not work properly until the original VM resumes
operation, if the data are not restored otherwise. To avoid
these issues, and to reduce the need for external storage,
GlusterFS [21] is used. GlusterFS enables the creation and
management of a virtual volume available to all VMs of the
Cluster, while the actual data saved on the virtual volume is
replicated in the base storage of each VM. This mechanism
is used to provide configurations, docker-compose files, and

the like, within the whole cluster. Since the synchronization
process with the default configuration of GlusterFS comes with
performance losses, we decided to limit the distribution of
MongoDB services to certain VMs with each of them storing
their data internally.

Finally, to ensure that encrypted communication to the
cluster is possible, we use Certbot [22]. Certbot is a free,
open-source, widely used software for creating and renewing
Let’s Encrypt TLS (Transport Layer Security) certificates [23]
automatically.

All of these individual components enable us to provide a
stable and reliable foundation for the ICT platform built on
top of it.

B. Platform Components

The proposed ICT platform consists of multiple individual
containerized services. We use the Eclipse Mosquitto MQTT
broker [24] and a set of FIWARE components to store and ex-
change device data which are explained in more detail below.
Although FIWARE also offers components for storing time-
series data, e.g., QuantumLeap [25], we decided to rely on our
existing InfluxDB-based solution, for which we implemented a
custom API to receive data from FIWARE. Not being a part of
the ICT platform, InfluxDB is beyond the scope of this paper.
Figure 2 shows a schematic overview of the components.

Fig. 2. Overview of the ICT platform setup.

1) Eclipse Mosquitto: for the communication between the
edge layer and FIWARE, we mainly use the MQTT protocol.
Thus, we installed Eclipse Mosquitto MQTT broker which is
an open-source MQTT implementation recommended by the
FIWARE foundation. Eclipse Mosquitto MQTT broker is easy
to install and configure and it supports a variety of MQTT
communication options:

• Plain MQTT
• MQTT over TLS
• MQTT over TLS (with client certificate)
• MQTT over WebSockets
• MQTT over WebSockets with TLS



2) FIWARE NGSI: FIWARE NGSI (Next Generation Ser-
vice Interfaces) is an information model and API specification
used for the interaction between FIWARE components within
the FIWARE ecosystem. FIWARE NGSI is also used by
applications to update, or process, context information. There
are two NGSI specifications currently used in the FIWARE
community:

• NGSI v2, offering JSON based interoperability
• NGSI-LD [26], which has been developed on the basis

of JSON-LD [27]
3) Orion Context Broker: FIWARE Context Broker is the

core and mandatory component of any FIWARE platform. FI-
WARE offers several Context Broker implementations which
differ in the FIWARE NGSI version they support (NGSI v2 or
NGSI-LD), communication protocols they use (HTTP, MQTT)
and integrations they bring with them.

We use FIWARE Orion Context Broker which implements
NGSI v2 specification and supports HTTP communication
protocol. It offers:

• a data model for context information, which is based
on entities where each represents a physical or logical
object (e.g. a sensor, a room, etc.), their attributes (e.g.
temperature, location, etc.) and relationships between
them;

• an interface for accessing entities and their attributes
through queries, subscriptions, and update operations.

The OCB stores context information and metadata of the actual
field devices while managing relationships between them and
other logical entities, e.g., a relationship between a humidity
sensor and the room where it is installed.

4) IoT-Agent JSON: a FIWARE IoT Agent is a bridge
component between various, widely-spread device protocols,
e.g., OPC UA, Ultralight 2.0, LoRaWAN (Long Range Wide
Area Network) [28], etc. and the NGSI interface of a FIWARE
Context Broker. For the communication and data exchange
over MQTT we use the FIWARE IoT Agent for a JSON-
based protocol. In particular, the FIWARE JSON IoT-Agent
subscribes to the Mosquitto MQTT broker and translates
messages received via MQTT to the FIWARE custom data
format and interface language, NGSI v2 (Next Generation
Service Interface) [29], and vice-versa.

5) MongoDB: both FIWARE components, the OCB and
the JSON IoT agent, make use of the MongoDB database
for data persistence. MongoDB is a source-available, NoSQL
document-oriented database with a free-to-use Community
version. To reduce the probability of data loss, to increase
the data availability and to ensure automatic failover we
set up a three-node replica set. A replica set is a group
of MongoDB instances maintaining the same data, having
one primary node which receives all write operations, and
secondary nodes which replicate the primary node and can
serve read operations.

6) Mongo-Express: a visualization tool for MongoDB [30].
It provides a web interface with the capability to browse
through all databases, tables and entries stored within Mon-

goDB. In our setup, Mongo-Express is being used to easily
manage the MongoDB.

7) Keycloak: to enforce user permissions and to establish
correct data access policies the open-source identity and access
management software Keycloak [31] is used. Keycloak pro-
vides such functionality as user management, authentication
and fine-grained authorization. Within Keycloak it is possible
to define users, groups and roles/scopes and to allow access to
web applications and RESTful APIs based on these definitions.
It is also possible to integrate Keycloak with existing LDAP
(Lightweight Directory Access Protocol) and Active Directory
servers.

To request access for a specific API, a request is sent
towards the Keycloak API containing the predefined user
credentials. After validating the login data, Keycloak returns a
JWT (JSON Web Token) [32], all roles and scopes defined for
that specific user, the token’s expiration time (the time for how
long the token is valid, which is 5 min by default) and more.
With that token, it is possible to send a proper request towards
the target API over HAProxy. HAProxy can then authorise
requests based on the token. We configured Keycloak to store
its data in PostgreSQL [33] which is a widely-used and reliable
database.

8) HAProxy: for obvious reasons, it is not recommended to
provide unencrypted websites, APIs and so on on a possibly
public network. One way to implement the TLS encryption
of communication is to hide the actual services in a private
network behind a reverse proxy and to configure the reverse
proxy to encrypt the network traffic between it and clients via
a TLS certificate and its private key.

For the TLS encryption of the communication between
client applications and the ICT platform, as well as for the inte-
gration of Keycloak, we employ HAProxy [34]. HAProxy is an
open-source software providing, among other things, reverse
proxy and load balancer functionality for web and TCP-based
applications. Thus, HAProxy uses the TLS certificate created
by Certbot to encrypt the communication. It is easy to set
up, fast, efficient and reliable. Additionally, HAProxy can be
customised using individual scripts based on the Lua language.
Besides, it can be managed by multiple configuration files to
easily extend the base configuration.

For proper redirection of requests, HAProxy can use sub-
domain names and the internal Docker DNS which allows
service name resolution for all services within a network. This
way, HAProxy can redirect incoming requests to the desired
service based on the URL without publishing the port used
internally, e.g., if the ICT platform is running on example.com
it is possible to map orion.example.com to the OCB service.

C. Deployment

Navigating the intricacies of the FIWARE and other com-
ponents and configuring them to ensure stable operation can
require considerable effort in familiarization and fine-tuning.
This involves comprehensive exploration and understanding
of each component’s functionalities, interfaces, and depen-
dencies. It requires close attention to detail and a systematic



approach to configuring parameters, orchestrating interactions,
and resolving potential conflicts or compatibility issues. More-
over, it often entails extensive testing and validation to verify
the effectiveness and reliability of the configured components
under various scenarios and workloads. For easy deployment
of the proposed setup in this paper on Docker Swarm, we
made a deployment kit available as open source [35].

IV. EXEMPLARY APPLICATIONS

The initial monitoring and control applications developed
within LLEC were successfully deployed without relying on
a dedicated middleware solution by the prototypical setup
proposed by Redder et al. [6]. Following the deployment
of the proposed FIWARE-based setup, these and additional
applications are now being migrated. The current setup is
shown in Fig. 3. For the ingestion of data, dedicated adapters
were developed, which are for the sake of brevity not described
further here.

IoT MiddlewareField Applications

Orion 
Context
Broker

IoT
Agent

fiware2
influxdb

MQTT

Energy Dashboard

JuControl

Fig. 3. FIWARE-based ICT-Platform with first applications.

In the following, two use cases are introduced and discussed
briefly.

A. Ingestion of metering data

The first application deployed making use of the new
setup is the transmission and ingestion of metering data of
the regular metering infrastructure at FZJ, which provides
for the measurement of e.g. electricity, heating and cooling
requirements at building level. This data is used for various
purposes, including the display of energy data for FZJ’s staff
members via the LLEC Energy Dashboard (see Fig. 4). In
the upper part, the green curve shows the overall electricity
demand and the red curve the overall heating demand of FZJ’s
campus.

In this case, the adapter automatically provisions a new
metering data point as soon as a new data point occurs that
fulfils the requirements of the scheme. We found that the
automatic registration and logging of about 500 metering data
points worked flawlessly.

B. Ingestion of sensor data on room level

Within the aforementioned web application JuControl, users
can visualize measurement data of the sensors installed in
their office (see Fig. 5). The figure shows the user’s view
of an exemplary office. The current weather data is shown

Fig. 4. LLEC Energy Dashboard - Energy demands of FZJ campus and
buildings (green curve = electricity demand, red curve = heating demand)
[5].

in the upper section. In the upper left part, the current indoor
air (quality) measurements of the room are displayed (CO2
concentrations, relative humidiy level and air temperature).

The majority of sensors are wireless sensors making use
of the EnOcean protocol but also wired KNX sensors and
actuators are part of the setup. Some of these sensors report
a measured value on a time-controlled basis, while others
report in the event of a status change. The interface between
the field level and cloud is formed by edge devices, where
the Machine-to-machine (M2M) protocol ADS is used for
communication between the edge devices and cloud [6]. Data
models and the so-called pyADS-Adapters were developed
in order to establish communication between the FIWARE
and the edge devices in the field. The edge devices need to
be parametrized for the specific EnOcean devices and group
addresses as they are programmed as a part of the KNX setup.
Adding new EnOcean devices or KNX group address triggers
the provisioning of the device in FIWARE.

Fig. 5. JuControl - Excerpt of the web-based interface of an exemplary
office - showing real-time measurement data regarding indoor air (quality)
and ambient conditions. [5].

Some of the sensors (e.g. door and window state sensors) re-
port in case of change of value (COV). Other sensors (e.g. the
wireless thermostats), which depending on the actual operating
mode, measure and report either the flow temperature at the
radiator or the room temperature in the vicinity of the radiator
based in a parameterizable time interval (e.g. 15 minutes).
Some other sensors (e.g. operating panels next to the door)
report both a parameterizable time interval and COV. We found
that the automatic provisioning and logging of about 4,000
EnOcean devices and 20,000 KNX group addresses worked
flawlessly and data transfer ran smoothly.



V. TRANSFERABILITY

While the ICT platform has initially been developed for
the LLEC setup at FZJ, its architecture and functionality are
designed to fit to the needs of similar setups elsewhere. This
inherent adaptability and scalability make the ICT platform
highly transferable to other setups, e.g. city districts or local
energy communities facing comparable challenges and re-
quirements. The architecture ensures that it can be seamlessly
integrated and customized to suit varying environments. For
an easy deployment, a deployment package has been prepared
to provide a production ready setup for the FIWARE Platform.
The repository contains all information to setup FIWARE on
a a Docker Swarm cluster. Further details can be found in the
description of the corresponding Gitlab repository.

VI. CONCLUSIONS

In this work, a setup for a FIWARE-based Information and
Communication Technologies (ICT) platform for local energy
communities is proposed. Core components of the FIWARE
setup have been adopted, e.g. the Orion Context Broker
(OCB). The setup diverges at specific points as required,
accommodating unique needs and circumstances, e.g., with
respect to the time-series database. For a first service, it could
be demonstrated that the proposed setup works well for first
use-cases at Forschungszentrum Jülich, such as the ingestion
of metering data of the regular metering infrastructure of the
research center and data of wireless sensors at room level. For
easy deployment for similar use-cases, a deployment kit has
been developed and made available as open source.

While the ICT platform and all its components are already
sturdy and reliable, additional adjustments will be made in
future. An upcoming add-on is the addition of logging and
monitoring through an ElasticStack (Elasticsearch, Kibana and
Filebeat/Metricbeat). It is also planned to move from a Docker
swarm setup to a Kubernetes setup for a more future-proof
setup.

FUNDING

Parts of this research were funded by the German Federal
Ministry for Economic Affairs and Climate Action (BMWK),
grant numbers 84703ET1551A, 03ET1551A, and the German
Federal Ministry of Education and Research (BMBF), grant
number 03EK3047.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the constructive col-
laboration with the internal and external project partners. In
particular, we would like to thank the Jülich Supercomputing
Center (JSC), and IT-Services (ITS).

REFERENCES

[1] F. et al., “Global carbon budget 2022,” Earth System Science
Data, vol. 14, no. 11, pp. 4811–4900, 2022. [Online]. Available:
https://essd.copernicus.org/articles/14/4811/2022/

[2] International Energy Agency, “CO2 Emissions in 2022,” International
Energy Agency, Paris, France, Tech. Rep., 2023. [Online]. Available:
https://www.iea.org/reports/co2-emissions-in-2022

[3] J. Drgoňa, J. Arroyo, I. C. Figueroa, D. Blum, K. Arendt, D. Kim, E. P.
Ollé, J. Oravec, M. Wetter, D. L. Vrabie, and L. Helsen, “All you need
to know about model predictive control for buildings,” Annual Reviews
in Control, vol. 50, pp. 190–232, 2020.

[4] M. Mork, F. Redder, A. Xhonneux, and D. Müller, “Real-world
implementation and evaluation of a model predictive control framework
in an office space,” Journal of Building Engineering, vol. 78,
p. 107619, 2023. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S2352710223017990

[5] E. Ubachukwu, J. Pick, L. Riebesel, P. Lieberenz, P. Althaus, D. Müller,
and A. Xhonneux, “LLEC energy dashboard suite: User engage-
ment for energy-efficient behavior using dashboards and gamification.”
ECOS2023 - 36th International Conference on Efficiency, Cost, Opti-
mization, Simulation and Environmental Impact of Energy Systems, Las
Palmas de Gran Canaria, Spain, 2023, doi: 10.34734/FZJ-2024-00035.

[6] F. Redder, P. Althaus, E. Ubachukwu, M. Mork, S. Johnen, C. Küpper,
P. Lieberenz, M. Oden, L. Westphal, T. Storek, , A. Xhonneux, and
D. Müller, “nformation and communication technologies (ict) for holistic
building energy system operation in living labs: Conceptualization, im-
plementation, evaluation,” Pre-print available at 10.2139/ssrn.4743282.

[7] FIWARE - open APIs for open minds. [Online]. Available: https:
//www.fiware.org/

[8] T. Storek, J. Lohmüller, A. Kümpel, M. Baranski, and D. Müller,
“Application of the open-source cloud platform fiware for future building
energy management systems,” Journal of Physics Conference Series
Journal of Physics Conference Series 1343(1), 2019.

[9] G. Vaglica, F. Bono, and G. Renaldi, A JRC FIWARE testbed for SMART
building and infrastructures: Implementation of the FIWARE platform
for performance testing and heterogeneous sensor nodes, ser. EUR.
Luxembourg: Publications Office of the European Union, 2020, vol.
30038.

[10] A. Benigni, A. Xhonneux, D. Carta, T. Pesch, and D. Müller, “On
the development of control solutions for local energy communities:
An incremental prototyping approach and related infrastructure,” at -
Automatisierungstechnik, vol. 70, pp. 1095–1115, 2022.

[11] P. Althaus, F. Redder, E. Ubachukwu, M. Mork, A. Xhonneux, and
D. Müller, “Enhancing building monitoring and control for district
energy systems: Technology selection and installation within the living
lab energy campus,” Applied Sciences, vol. 12, no. 7, p. 3305, 3 2022.

[12] Modbus. [Online]. Available: https://modbus.org
[13] OPC UA. [Online]. Available: https://opcfoundation.org
[14] MQTT. [Online]. Available: https://mqtt.org
[15] MongoDB. [Online]. Available: https://www.mongodb.com
[16] TimescaleDB. [Online]. Available: https://www.timescale.com
[17] AMQP. [Online]. Available: https://www.amqp.org
[18] OpenStack. [Online]. Available: https://www.openstack.org
[19] Docker. [Online]. Available: https://www.docker.com
[20] Keepalived. [Online]. Available: https://www.keepalived.org
[21] GlusterFS. [Online]. Available: https://www.gluster.org
[22] Certbot. [Online]. Available: https://certbot.eff.org
[23] Let’s Encrypt. [Online]. Available: https://letsencrypt.org
[24] Eclipse Mosquitto™. [Online]. Available: https://mosquitto.org
[25] QuantumLeap. [Online]. Available: https://github.com/orchestracities/

ngsi-timeseries-api
[26] NGSI LD. [Online]. Available: https://forge.etsi.org/swagger/ui/?url=

https://forge.etsi.org/rep/NGSI-LD/NGSI-LD/-/raw/1.6.1/ngsi-ld-api.
yaml

[27] JSON LD. [Online]. Available: https://json-ld.org
[28] LoRaWAN. [Online]. Available: https://lora-alliance.org
[29] NGSI v2. [Online]. Available: https://swagger.lab.fiware.org/?uri=https:

//raw.githubusercontent.com/Fiware/specifications/master/OpenAPI/
ngsiv2/ngsiv2-openapi.json

[30] Mongo-Express. [Online]. Available: https://www.timescale.com
[31] Keycloak. [Online]. Available: https://www.keycloak.org
[32] JSON Web Token. [Online]. Available: https://jwt.io
[33] PostgreSQL. [Online]. Available: https://www.postgresql.org
[34] HAProxy. [Online]. Available: https://www.haproxy.org
[35] ICT platform · GitLab. [Online]. Available: https://jugit.fz-juelich.de/

iek-10/public/ict-platform

https://essd.copernicus.org/articles/14/4811/2022/
https://www.iea.org/reports/co2-emissions-in-2022
https://www.sciencedirect.com/science/article/pii/S2352710223017990
https://www.sciencedirect.com/science/article/pii/S2352710223017990
https://www.fiware.org/
https://www.fiware.org/
https://modbus.org
https://opcfoundation.org
https://mqtt.org
https://www.mongodb.com
https://www.timescale.com
https://www.amqp.org
https://www.openstack.org
https://www.docker.com
https://www.keepalived.org
https://www.gluster.org
https://certbot.eff.org
https://letsencrypt.org
https://mosquitto.org
https://github.com/orchestracities/ngsi-timeseries-api
https://github.com/orchestracities/ngsi-timeseries-api
https://forge.etsi.org/swagger/ui/?url=https://forge.etsi.org/rep/NGSI-LD/NGSI-LD/-/raw/1.6.1/ngsi-ld-api.yaml
https://forge.etsi.org/swagger/ui/?url=https://forge.etsi.org/rep/NGSI-LD/NGSI-LD/-/raw/1.6.1/ngsi-ld-api.yaml
https://forge.etsi.org/swagger/ui/?url=https://forge.etsi.org/rep/NGSI-LD/NGSI-LD/-/raw/1.6.1/ngsi-ld-api.yaml
https://json-ld.org
https://lora-alliance.org
https://swagger.lab.fiware.org/?uri=https://raw.githubusercontent.com/Fiware/specifications/master/OpenAPI/ngsiv2/ngsiv2-openapi.json
https://swagger.lab.fiware.org/?uri=https://raw.githubusercontent.com/Fiware/specifications/master/OpenAPI/ngsiv2/ngsiv2-openapi.json
https://swagger.lab.fiware.org/?uri=https://raw.githubusercontent.com/Fiware/specifications/master/OpenAPI/ngsiv2/ngsiv2-openapi.json
https://www.timescale.com
https://www.keycloak.org
https://jwt.io
https://www.postgresql.org
https://www.haproxy.org
https://jugit.fz-juelich.de/iek-10/public/ict-platform
https://jugit.fz-juelich.de/iek-10/public/ict-platform

	Introduction
	Considered framework
	Living Lab Energy Campus (LLEC)
	FIWARE

	ICT Platform
	Infrastructure
	Platform Components
	Eclipse Mosquitto
	FIWARE NGSI
	Orion Context Broker
	IoT-Agent JSON
	MongoDB
	Mongo-Express
	Keycloak
	HAProxy

	Deployment

	Exemplary applications
	Ingestion of metering data
	Ingestion of sensor data on room level

	Transferability
	Conclusions
	References

