001     10311
005     20190625111125.0
024 7 _ |2 DOI
|a 10.1038/nphys1176
024 7 _ |2 WOS
|a WOS:000263458500021
024 7 _ |a altmetric:21804270
|2 altmetric
037 _ _ |a PreJuSER-10311
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Multidisciplinary
100 1 _ |0 P:(DE-HGF)0
|a Stadler, C.
|b 0
245 _ _ |a Tuning intermolecular interaction in long-range-ordered submonolayer organic films
260 _ _ |a Basingstoke
|b Nature Publishing Group
|c 2009
300 _ _ |a 153 - 158
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
440 _ 0 |0 14921
|a Nature Physics
|v 5
|x 1745-2473
500 _ _ |a We thank F. Pollinger and the ESRF staff ( T.- L. Lee, J. Zegenhagen) for their help during the XSW experiments. Financial support by the BMBF, the DFG and the ESRF is acknowledged.
520 _ _ |a The future success of organic electronic devices strongly depends on the ability to tailor the properties of thin films and interfaces. This calls for well-ordered thin films. However, their properties are dominantly influenced by the formation of the first molecular layer representing a template for further growth. The development of the first layer-in turn-depends on the fine balance of molecule-substrate and molecule-molecule interaction. The latter is usually attractive owing to van der Waals forces and causes the formation of islands and small crystalline grains. Here, we report on organic adsorbates exhibiting a repulsive intermolecular interaction. With increasing coverage, Sn-phthalocyanine molecules continuously rearrange on Ag(111) in a series of ordered superstructures. They always fill the surface terraces homogeneously and maximize the domain size. Thicker films also exhibit extremely large, monocrystalline grains and potentially enable bulk-like properties for thin films. The intermolecular interaction can be tuned by cooling and becomes attractive below similar to 120 K.
536 _ _ |0 G:(DE-Juel1)FUEK414
|2 G:(DE-HGF)
|a Kondensierte Materie
|c P54
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
700 1 _ |0 P:(DE-HGF)0
|a Hansen, S.
|b 1
700 1 _ |0 P:(DE-Juel1)VDB93047
|a Kröger, I.
|b 2
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Umbach, E.
|b 3
700 1 _ |0 P:(DE-Juel1)VDB77884
|a Kumpf, C.
|b 4
|u FZJ
773 _ _ |0 PERI:(DE-600)2206346-8
|a 10.1038/nphys1176
|g Vol. 5, p. 153 - 158
|p 153 - 158
|q 5<153 - 158
|t Nature physics
|v 5
|x 1745-2473
|y 2009
856 7 _ |u http://dx.doi.org/10.1038/nphys1176
909 C O |o oai:juser.fz-juelich.de:10311
|p VDB
913 1 _ |0 G:(DE-Juel1)FUEK414
|b Materie
|k P54
|l Kondensierte Materie
|v Kondensierte Materie
|x 0
|z entfällt bis 2009
914 1 _ |y 2009
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |0 I:(DE-Juel1)VDB801
|d 31.12.2010
|g IBN
|k IBN-3
|l Grenz- und Oberflächen
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|g JARA
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|x 1
970 _ _ |a VDB:(DE-Juel1)120583
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-3-20110106
981 _ _ |a I:(DE-Juel1)VDB881


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21