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The proposed method enables learning of cytoarchitectonic features and outperforms the
supervised contrastive learning method on the test dataset. However, generalization to unseen
brains is a challenging task that remains unsolved. 

Compared to the sota method [3], the proposed method does not use annotations for
pre-training, has lower inductive bias with respect to predefined areas, and is thus
applicable to a wider range of applications.

Training deep neural networks on image patches derived from various imaging 
techniques [1,6], with the goal of learning representations to identify and extract 
both shared and distinct features.
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Aim: Cytoarchitectonic Brain Mapping
We train deep neural networks to predict brain areas from
high-resolution image patches sampled along the midline of
the cerebral cortex.

 
 

cortex

gray-white 
matter boundary

cortical layers

Cytoarchitecture can be analyzed in high-resolution microscopic scans of 
cell-body stained histological sections. It encompasses the distribution and 
size of neuronal cell bodies, their shape, orientation, type, as well as their
columnar and laminar organization. 

Postmortem human brains were obtained from the body donor
programs of the anatomical institutes of the universities of
Düsseldorf, Rostock and Aachen.  

Histological processing of a postmortem brain [1] 
• Cutting brain into 6000-7500 thin histological slices
• Staining for cell bodies
• Scanning with high-throughput light microscopic scanners at a
resolution of 1µm/px 
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Assumption: Image patches sampled 
from spatially close locations are more
similar than those extracted from 
distant locations.

Prerequisite: Registration of each 
brain in an anatomical reference space 
to obtain canonical spatial coordinates.

Data sampling:  
• Uniform sampling of coordinates
   within cerebral cortex 
• Patches are centered around these
   coordinates
• Image patches of size 2048 x 2048 px
   at 2µm resolution  

Idea: Learn latent space so that
representations of similar inputs are
closer than those of negative pairs

Geodesic distance:
Length of the shortest path along the
surface of an object.
➜ similarity measure used to weight
pairs of patches

CytoPLI Sections derived from various imaging modalities contain shared
and complementary information:
• Cell-body staining: cellular architecture
• Polarized light imaging [6]: connectivity and fiber tracts

Motivation:
• Spatial anchoring: attaching patches to specific locations in a 3D brain volume
• Cross-modality image generation: predict one image modality from the other
• Identifying common and shared information in both modalities   

Idea: Our goal is to develop a CLIP-inspired [4] neural network architecture that integrates
image patches from different modalities and learns meaningful representations from them.
As our work has shown promising results, future work will further investigate the capabilities
of learning from spatial information. 
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