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The characterization of cytoarchitecture in the human brain provides an essential 
building block for the creation of a high-resolution multi-modal brain atlas [1,2]. 
Cytoarchitecture is defined by the spatial organization of neuronal cells, including 
their shape, density, size, cell type, as well as their columnar and laminar 
arrangement, which differ between brain regions. High-throughput light-
microscopic scanning of large, cell-body stained histological sections obtained by 
sectioning postmortem human brains enables detailed examination of 
cytoarchitectonic organizational principles across multiple brain samples, which is 
mandatory to capture the highly variable cytoarchitectonic organization.

Each location in
each brain is 
associated with an 
image path, extracted from a
high-resolution microscopic scan
of a cell-body stained human brain section

Sectioning of a

postmortem human

brain that was 

embedded in 

paraffine

Performance for Large-scale
Automatic Brain Mapping

batch size

Contrastive Learning from 3D
Spatial Relationships

Locations in reference 
space are identified with 

locations in individual 
brains using non-linear 

transformations [1]

The Colin-27 reference
brain space provides
a common coordinate
system that allows us
to compute spatial
distances between
locations in
different brains

Pairwise euclidean distances in the
reference coordinate space define the 
similarity relationship
for contrastive learning

*most connections
 omitted for clarity

Dataset, training, evaluation

  • 9 brains, 4128 sections

  • Patch size: 2048px@2μm/px

  • Batch size: 2048

• Hardware configuration

  • JURECA-DC [5] (16 nodes)

  • 64 A100 GPUs

• Linear finetuning

   • 135600 samples

   • 113 annotated brain areas

   • 80/20 train/test section split

   • 8/1 test/validation brain split

   • Comparison to training from

      Scratch and SupCon [4]

• Feature embedding analysis

   • UMAP [6] (subsample 50)

    • Color coding by Julich Brain [1]

Distance-Weighted Contrastive Loss

Idea
Spatially close locations in the brain 

are likely to share cytoarchitectonic 

structures.

Examples of image 
patches uniformly 

sampled from the cortex 
of different brains

The model uses a modified ResNet50/101

architecture [3,4] with an additional downsampling 

head that accounts for the large input image patch 
size. Fully-connected projection layers are replaced by a 

linear classifier when finetuning for brain area 

classification.
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The distance transfer function 

converts euclidean distances 

computed in the reference space into 

weights that define sample similarity 

for the contrastive loss.

layers

neurons

High-resolution image patches 
enable analysis of cytoarchitectonic 
organization and are used as input for 
our deep neural networks

Embedding Analysis of Learned 
Feature Representations

Histological processing & Imaging [1,2]

• Sectioning

  • 6000-8000 sections per brain

  • Thickness: 20μm

• Staining for cell bodies

• Light-microscopic scanning (1μm/px)
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Examples of brain areas with 
different cytoarchitecture

Mapping of cytoarchitectonic areas in a 
histological brain section
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Goal
Decode and map the complex 

patterns of cell distributions in the 

human brain.
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The latent space of CytoNet is 
anatomically highly plausible, 
demonstrating it's ability to learn 
meaningful cytoarchitectonic 
representations from spatial 
relationships.

First UMAP dimension on 
the surface of brain B20, 

showing a clear separation 
at the central sulcus. 

Feature embedding analysis with UMAP

• Brains are clearly separated in embedding space

→ Individual variations larger than cytoarchitectonic differences

→ Systematic structural differences across individuals

• Strong similarity in internal organization of each brain

→ Common cytoarchitectonic structures in each brain

→ "Absolute" and "relative" cytoarchitecture

• Embedding space displays cytoarchitectonic structures

→ Strong separation at the central sulcus

→ Clustering of cytoarchitectonic brain areas

The contrastive training objective 
attracts feature representations of 
spatially close samples, while 
repelling representations of distant 
samples.

Cytoarchitectonic Analysis in 
Histological Brain Sections

Results
CytoNet outperforms existing 

methods for brain area 

classification, particularly on 

unknown brains. Learned features are 

anatomically highly plausible and 

reflect important principles of 

cytoarchitectonic organization. 

CytoNet is the first step towards a 

foundation model for microstructural 

brain organization.

Classification Metrics for Automatic Brain Mapping
E30/E500 - Epochs for finetuning
R50/R101 - ResNet50/101-based encoder
200k/1M/10M - CytoNet pre-training sample count
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