Home > Publications database > Synergistic Enhancement of Mechanical and Electrochemical Properties in Grafted Polymer/Oxide Hybrid Electrolytes > print |
001 | 1031177 | ||
005 | 20250203133207.0 | ||
024 | 7 | _ | |a 10.1002/smll.202404537 |2 doi |
024 | 7 | _ | |a 1613-6810 |2 ISSN |
024 | 7 | _ | |a 1613-6829 |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2024-05581 |2 datacite_doi |
024 | 7 | _ | |a 39185805 |2 pmid |
024 | 7 | _ | |a WOS:001298262500001 |2 WOS |
037 | _ | _ | |a FZJ-2024-05581 |
082 | _ | _ | |a 620 |
100 | 1 | _ | |a Scharf, Felix |0 P:(DE-Juel1)188525 |b 0 |
245 | _ | _ | |a Synergistic Enhancement of Mechanical and Electrochemical Properties in Grafted Polymer/Oxide Hybrid Electrolytes |
260 | _ | _ | |a Weinheim |c 2024 |b Wiley-VCH |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1732540065_25314 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a Zudem unterstützt durch: “FB2-Hybrid” (grant: 13XP0428A), “FB2-TheoDat” (grant: 03XP0435A/E). |
520 | _ | _ | |a Lithium metal batteries operated with high voltage cathodes are predestined for the realization of high energy storage systems, where solid polymer electrolytes offer a possibility to improve battery safety. Al2O3_PCL is introduced as promising hybrid electrolyte made from polycaprolactone (PCL) and Al2O3 nanoparticles that can be prepared in a one-pot synthesis as a random mixture of linear PCL and PCL-grafted Al2O3. Upon grafting, synergistic effects of mechanical stability and ionic conductivity are achieved. Due to the mechanical stability, manufacture of PCL-based membranes with a thickness of 50 µm is feasible, yielding an ionic conductivity of 5·10−5 S cm−1 at 60 °C. The membrane exhibits an impressive performance of Li deposition in symmetric Li||Li cells, operating for 1200 h at a constant and low overvoltage of 54 mV and a current density of 0.2 mA cm−2. NMC622 | Al2O3_PCL | Li cells are cycled at rates of up to 1 C, achieving 140 cycles at >80% state of health. The straightforward synthesis and opportunity of upscaling as well as solvent-free polymerization render the Al2O3_PCL hybrid material as rather safe, potentially sustainable and affordable alternative to conventional polymer-based electrolytes. |
536 | _ | _ | |a 1221 - Fundamentals and Materials (POF4-122) |0 G:(DE-HGF)POF4-1221 |c POF4-122 |f POF IV |x 0 |
536 | _ | _ | |a FB2-POLY - Zellplattform Polymere (BMBF-13XP0429A) |0 G:(DE-Juel1)BMBF-13XP0429A |c BMBF-13XP0429A |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Krude, Annalena |0 P:(DE-Juel1)194100 |b 1 |u fzj |
700 | 1 | _ | |a Lennartz, Peter |0 P:(DE-Juel1)164855 |b 2 |
700 | 1 | _ | |a Clausnitzer, Moritz |0 0009-0000-4743-4947 |b 3 |
700 | 1 | _ | |a Shukla, Gourav |0 0009-0002-6259-3377 |b 4 |
700 | 1 | _ | |a Buchheit, Annika |0 P:(DE-Juel1)180325 |b 5 |
700 | 1 | _ | |a Kempe, Fabian |b 6 |
700 | 1 | _ | |a Diddens, Diddo |0 P:(DE-Juel1)169877 |b 7 |
700 | 1 | _ | |a Glomb, Pascal |0 P:(DE-Juel1)195918 |b 8 |u fzj |
700 | 1 | _ | |a Mitchell, Melanie M. |0 P:(DE-Juel1)192389 |b 9 |u fzj |
700 | 1 | _ | |a Danner, Timo |0 0000-0003-2336-6059 |b 10 |
700 | 1 | _ | |a Heuer, Andreas |0 P:(DE-Juel1)176646 |b 11 |u fzj |
700 | 1 | _ | |a Latz, Arnulf |0 0000-0003-1449-8172 |b 12 |
700 | 1 | _ | |a Winter, Martin |0 P:(DE-Juel1)166130 |b 13 |u fzj |
700 | 1 | _ | |a Brunklaus, Gunther |0 P:(DE-Juel1)172047 |b 14 |
773 | _ | _ | |a 10.1002/smll.202404537 |g p. 2404537 |0 PERI:(DE-600)2168935-0 |n 47 |p 2404537 |t Small |v 20 |y 2024 |x 1613-6810 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1031177/files/Small%20-%202024%20-%20Scharf%20-%20Synergistic%20Enhancement%20of%20Mechanical%20and%20Electrochemical%20Properties%20in%20Grafted%20Polymer%20Oxide-1.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:1031177 |p openaire |p open_access |p OpenAPC_DEAL |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)188525 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)194100 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)164855 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)180325 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)169877 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)195918 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)192389 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 11 |6 P:(DE-Juel1)176646 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 13 |6 P:(DE-Juel1)166130 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 14 |6 P:(DE-Juel1)172047 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-122 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Elektrochemische Energiespeicherung |9 G:(DE-HGF)POF4-1221 |x 0 |
914 | 1 | _ | |y 2024 |
915 | p | c | |a APC keys set |0 PC:(DE-HGF)0000 |2 APC |
915 | p | c | |a DEAL: Wiley 2019 |0 PC:(DE-HGF)0120 |2 APC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-25 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2023-10-25 |w ger |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-25 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b SMALL : 2022 |d 2024-12-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-27 |
915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b SMALL : 2022 |d 2024-12-27 |
920 | 1 | _ | |0 I:(DE-Juel1)IMD-4-20141217 |k IMD-4 |l Helmholtz-Institut Münster Ionenleiter für Energiespeicher |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IMD-4-20141217 |
980 | _ | _ | |a APC |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|