001031197 001__ 1031197
001031197 005__ 20240920204823.0
001031197 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-05597
001031197 037__ $$aFZJ-2024-05597
001031197 041__ $$aEnglish
001031197 1001_ $$0P:(DE-Juel1)200423$$aWolf, David Magnus$$b0$$eFirst author$$ufzj
001031197 1112_ $$aEuromembrane 2024$$cPrague$$d2024-09-08 - 2024-09-12$$wCzech Republic
001031197 245__ $$a2D MOFs on ceramic supports for gas separation applications
001031197 260__ $$c2024
001031197 3367_ $$033$$2EndNote$$aConference Paper
001031197 3367_ $$2DataCite$$aOther
001031197 3367_ $$2BibTeX$$aINPROCEEDINGS
001031197 3367_ $$2DRIVER$$aconferenceObject
001031197 3367_ $$2ORCID$$aLECTURE_SPEECH
001031197 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1726824479_3040$$xAfter Call
001031197 502__ $$cUniversity of Twente - Enschede
001031197 520__ $$aGas separation membranes can play a huge role in the future as a separation technology for hydrogen due to its poten-tial application as an environmentally friendly energy storage- or as a propulsion system for vehicles. Natural gasstreams are considered as a means of transportation for hydrogen as long as a suitable technology can be used toseparate hydrogen from the rest of the gas at the end of the process. Membrane technology appears as a promisingsolution to this.Interesting membrane materials, that can achieve the goal of selective H2/CH4 and H2/N2 gas separations, are 2D-basedzeolite membranes thanks to their defined pore aperture, and high flux due to their low thickness [7, 9]. An interesting2D zeolite for the separation of H2 from bigger gas molecules, such as CH4 or CO2, is the titanosilicate zeolite JDF-1 dueto the small pore aperture in the range of the hydrogen molecule [6]. Only a few works in the literature address the useof this specific zeolite [2, 5, 6]. Most of them focus on mixed matrix membrane (MMM) preparation by impregnation/in-filtration of the 2D zeolite and related nanosheet in a polymer matrix. Such preparation leads to the formation of com-posite membrane materials with aggregated zeolite nanomaterial in the polymer matrix. Despite their impressiveH2/CH4 selectivity of up to 128 [2] such MMMs exhibit inherent limitations such as their susceptibility to plasticization[3] and have usually a far bigger thickness up to the magnitude of several microns [1, 4, 8].In this work, a new generation of 2D-based zeolite membranes made of titanosilicate nanosheets was developed directlyon porous ceramic supports (Fig. 1). The preparation of these membranes requires the controlled deposition ofnanosheets followed by the in-situ surface polymerization of a thin polyimide network to cover the defects and enhancethe separation performance of the membrane. Relevant characterization methods were deployed to investigate themorphology and composition of the membrane and the separation performance was investigated using gas permeationmeasurements under pressure gradient.
001031197 536__ $$0G:(DE-HGF)POF4-1232$$a1232 - Power-based Fuels and Chemicals (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001031197 65027 $$0V:(DE-MLZ)SciArea-180$$2V:(DE-HGF)$$aMaterials Science$$x0
001031197 65027 $$0V:(DE-MLZ)SciArea-110$$2V:(DE-HGF)$$aChemistry$$x1
001031197 65017 $$0V:(DE-MLZ)GC-2004-2016$$2V:(DE-HGF)$$aBasic research$$x0
001031197 7001_ $$0P:(DE-Juel1)188372$$aWolter, Julia Lucia$$b1$$ufzj
001031197 7001_ $$0P:(DE-HGF)0$$aAntonioli, Elena$$b2
001031197 7001_ $$0P:(DE-Juel1)162228$$aGuillon, Olivier$$b3$$ufzj
001031197 7001_ $$0P:(DE-HGF)0$$aNijmeijer, Arian$$b4
001031197 7001_ $$0P:(DE-Juel1)129637$$aMeulenberg, Wilhelm Albert$$b5$$ufzj
001031197 7001_ $$0P:(DE-Juel1)198626$$aPizzoccaro-Zilamy, Marie Alix$$b6$$eCorresponding author$$ufzj
001031197 8564_ $$uhttps://juser.fz-juelich.de/record/1031197/files/2D%20MOFs%20on%20ceramic%20supports%20for%20gas%20separation%20applications.pptx$$yOpenAccess
001031197 909CO $$ooai:juser.fz-juelich.de:1031197$$popenaire$$popen_access$$pVDB$$pdriver
001031197 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)200423$$aForschungszentrum Jülich$$b0$$kFZJ
001031197 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188372$$aForschungszentrum Jülich$$b1$$kFZJ
001031197 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162228$$aForschungszentrum Jülich$$b3$$kFZJ
001031197 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129637$$aForschungszentrum Jülich$$b5$$kFZJ
001031197 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)198626$$aForschungszentrum Jülich$$b6$$kFZJ
001031197 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1232$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001031197 9141_ $$y2024
001031197 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001031197 920__ $$lyes
001031197 9201_ $$0I:(DE-Juel1)IMD-2-20101013$$kIMD-2$$lWerkstoffsynthese und Herstellungsverfahren$$x0
001031197 980__ $$aconf
001031197 980__ $$aVDB
001031197 980__ $$aUNRESTRICTED
001031197 980__ $$aI:(DE-Juel1)IMD-2-20101013
001031197 9801_ $$aFullTexts