001031203 001__ 1031203 001031203 005__ 20250314090833.0 001031203 0247_ $$2doi$$a10.1016/j.ebiom.2024.105313 001031203 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-05603 001031203 0247_ $$2pmid$$a39255547 001031203 0247_ $$2WOS$$aWOS:001325507600001 001031203 037__ $$aFZJ-2024-05603 001031203 082__ $$a610 001031203 1001_ $$0P:(DE-HGF)0$$aOlfati, Mahnaz$$b0 001031203 245__ $$aPrediction of depressive symptoms severity based on sleep quality, anxiety, and gray matter volume: a generalizable machine learning approach across three datasets 001031203 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2024 001031203 3367_ $$2DRIVER$$aarticle 001031203 3367_ $$2DataCite$$aOutput Types/Journal article 001031203 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1726824380_3040 001031203 3367_ $$2BibTeX$$aARTICLE 001031203 3367_ $$2ORCID$$aJOURNAL_ARTICLE 001031203 3367_ $$00$$2EndNote$$aJournal Article 001031203 520__ $$aBackground: Depressive symptoms are rising in the general population, but their associated factors are unclear. Although the link between sleep disturbances and depressive symptoms severity (DSS) is reported, the predictive role of sleep on DSS and the impact of anxiety and the brain on their relationship remained obscure.Methods: Using three population-based datasets (N = 1813), we trained the machine learning models in the primary dataset (N = 1101) to assess the predictive role of sleep quality, anxiety problems, and brain structural (and functional) measurements on DSS, then we tested our models' performance in two independent datasets (N = 378, N = 334) to test the generalizability of our findings. Furthermore, we applied our model to a smaller longitudinal subsample (N = 66). In addition, we performed a mediation analysis to identify the role of anxiety and brain measurements on the sleep quality and DSS association.Findings: Sleep quality could predict individual DSS (r = 0.43, R2 = 0.18, rMSE = 2.73), and adding anxiety, contrary to brain measurements, strengthened its prediction performance (r = 0.67, R2 = 0.45, rMSE = 2.25). Importantly, out-of-cohort validations in other cross-sectional datasets and a longitudinal subsample provided robust similar results. Furthermore, anxiety scores, contrary to brain measurements, mediated the association between sleep quality and DSS.Interpretation: Poor sleep quality could predict DSS at the individual subject level across three datasets. Anxiety scores not only increased the predictive model's performance but also mediated the link between sleep quality and DSS.Funding: The study is supported by Helmholtz Imaging Platform grant (NimRLS, ZTI-PF-4-010), the Deutsche Forschungsgemeinschaft (DFG, GE 2835/2-1, GE 2835/4-1), the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)-Project-ID 431549029-SFB 1451, the programme "Profilbildung 2020" (grant no. PROFILNRW-2020-107-A), an initiative of the Ministry of Culture and Science of the State of Northrhine Westphalia.Keywords: Anxiety; Brain; Depressive symptoms severity; Machine learning; Sleep quality. 001031203 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0 001031203 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 001031203 7001_ $$0P:(DE-Juel1)201163$$aSamea, Fateme$$b1 001031203 7001_ $$0P:(DE-HGF)0$$aFaghihroohi, Shahrooz$$b2 001031203 7001_ $$0P:(DE-HGF)0$$aBalajoo, Somayeh Maleki$$b3 001031203 7001_ $$0P:(DE-Juel1)180212$$aKüppers, Vincent$$b4 001031203 7001_ $$0P:(DE-Juel1)161225$$aGenon, Sarah$$b5 001031203 7001_ $$0P:(DE-Juel1)172843$$aPatil, Kaustubh$$b6 001031203 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon B.$$b7 001031203 7001_ $$0P:(DE-Juel1)188400$$aTahmasian, Masoud$$b8$$eCorresponding author 001031203 773__ $$0PERI:(DE-600)2799017-5$$a10.1016/j.ebiom.2024.105313$$gVol. 108, p. 105313 -$$p105313 -$$tEBioMedicine$$v108$$x2352-3964$$y2024 001031203 8564_ $$uhttps://juser.fz-juelich.de/record/1031203/files/1-s2.0-S2352396424003499-main.pdf$$yOpenAccess 001031203 8564_ $$uhttps://juser.fz-juelich.de/record/1031203/files/1-s2.0-S2352396424003499-main.gif?subformat=icon$$xicon$$yOpenAccess 001031203 8564_ $$uhttps://juser.fz-juelich.de/record/1031203/files/1-s2.0-S2352396424003499-main.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 001031203 8564_ $$uhttps://juser.fz-juelich.de/record/1031203/files/1-s2.0-S2352396424003499-main.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 001031203 8564_ $$uhttps://juser.fz-juelich.de/record/1031203/files/1-s2.0-S2352396424003499-main.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 001031203 8767_ $$8E-2024-01242-b$$92024-12-11$$a1200209622$$d2024-12-18$$eAPC$$jZahlung erfolgt 001031203 8767_ $$8E-2024-01387-b$$92024-12-11$$d2024-12-18$$eAPC$$jZahlung angewiesen$$zKosten über 3000€ 001031203 909CO $$ooai:juser.fz-juelich.de:1031203$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire 001031203 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)201163$$aForschungszentrum Jülich$$b1$$kFZJ 001031203 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180212$$aForschungszentrum Jülich$$b4$$kFZJ 001031203 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161225$$aForschungszentrum Jülich$$b5$$kFZJ 001031203 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172843$$aForschungszentrum Jülich$$b6$$kFZJ 001031203 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b7$$kFZJ 001031203 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188400$$aForschungszentrum Jülich$$b8$$kFZJ 001031203 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0 001031203 9141_ $$y2024 001031203 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-26 001031203 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 001031203 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-05-02T08:51:17Z 001031203 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-05-02T08:51:17Z 001031203 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-26 001031203 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-26 001031203 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 001031203 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-05-02T08:51:17Z 001031203 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-26 001031203 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEBIOMEDICINE : 2022$$d2025-01-07 001031203 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-07 001031203 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-07 001031203 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-07 001031203 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-07 001031203 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bEBIOMEDICINE : 2022$$d2025-01-07 001031203 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set 001031203 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding 001031203 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten 001031203 915pc $$0PC:(DE-HGF)0125$$2APC$$aDEAL: Elsevier 09/01/2023 001031203 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal 001031203 920__ $$lyes 001031203 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0 001031203 9801_ $$aFullTexts 001031203 980__ $$ajournal 001031203 980__ $$aVDB 001031203 980__ $$aUNRESTRICTED 001031203 980__ $$aI:(DE-Juel1)INM-7-20090406 001031203 980__ $$aAPC