001     1031203
005     20250314090833.0
024 7 _ |a 10.1016/j.ebiom.2024.105313
|2 doi
024 7 _ |a 10.34734/FZJ-2024-05603
|2 datacite_doi
024 7 _ |a 39255547
|2 pmid
024 7 _ |a WOS:001325507600001
|2 WOS
037 _ _ |a FZJ-2024-05603
082 _ _ |a 610
100 1 _ |a Olfati, Mahnaz
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Prediction of depressive symptoms severity based on sleep quality, anxiety, and gray matter volume: a generalizable machine learning approach across three datasets
260 _ _ |a Amsterdam [u.a.]
|c 2024
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1726824380_3040
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Background: Depressive symptoms are rising in the general population, but their associated factors are unclear. Although the link between sleep disturbances and depressive symptoms severity (DSS) is reported, the predictive role of sleep on DSS and the impact of anxiety and the brain on their relationship remained obscure.Methods: Using three population-based datasets (N = 1813), we trained the machine learning models in the primary dataset (N = 1101) to assess the predictive role of sleep quality, anxiety problems, and brain structural (and functional) measurements on DSS, then we tested our models' performance in two independent datasets (N = 378, N = 334) to test the generalizability of our findings. Furthermore, we applied our model to a smaller longitudinal subsample (N = 66). In addition, we performed a mediation analysis to identify the role of anxiety and brain measurements on the sleep quality and DSS association.Findings: Sleep quality could predict individual DSS (r = 0.43, R2 = 0.18, rMSE = 2.73), and adding anxiety, contrary to brain measurements, strengthened its prediction performance (r = 0.67, R2 = 0.45, rMSE = 2.25). Importantly, out-of-cohort validations in other cross-sectional datasets and a longitudinal subsample provided robust similar results. Furthermore, anxiety scores, contrary to brain measurements, mediated the association between sleep quality and DSS.Interpretation: Poor sleep quality could predict DSS at the individual subject level across three datasets. Anxiety scores not only increased the predictive model's performance but also mediated the link between sleep quality and DSS.Funding: The study is supported by Helmholtz Imaging Platform grant (NimRLS, ZTI-PF-4-010), the Deutsche Forschungsgemeinschaft (DFG, GE 2835/2-1, GE 2835/4-1), the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)-Project-ID 431549029-SFB 1451, the programme "Profilbildung 2020" (grant no. PROFILNRW-2020-107-A), an initiative of the Ministry of Culture and Science of the State of Northrhine Westphalia.Keywords: Anxiety; Brain; Depressive symptoms severity; Machine learning; Sleep quality.
536 _ _ |a 5251 - Multilevel Brain Organization and Variability (POF4-525)
|0 G:(DE-HGF)POF4-5251
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Samea, Fateme
|0 P:(DE-Juel1)201163
|b 1
700 1 _ |a Faghihroohi, Shahrooz
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Balajoo, Somayeh Maleki
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Küppers, Vincent
|0 P:(DE-Juel1)180212
|b 4
700 1 _ |a Genon, Sarah
|0 P:(DE-Juel1)161225
|b 5
700 1 _ |a Patil, Kaustubh
|0 P:(DE-Juel1)172843
|b 6
700 1 _ |a Eickhoff, Simon B.
|0 P:(DE-Juel1)131678
|b 7
700 1 _ |a Tahmasian, Masoud
|0 P:(DE-Juel1)188400
|b 8
|e Corresponding author
773 _ _ |a 10.1016/j.ebiom.2024.105313
|g Vol. 108, p. 105313 -
|0 PERI:(DE-600)2799017-5
|p 105313 -
|t EBioMedicine
|v 108
|y 2024
|x 2352-3964
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1031203/files/1-s2.0-S2352396424003499-main.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1031203/files/1-s2.0-S2352396424003499-main.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1031203/files/1-s2.0-S2352396424003499-main.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1031203/files/1-s2.0-S2352396424003499-main.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1031203/files/1-s2.0-S2352396424003499-main.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1031203
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)201163
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)180212
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)161225
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)172843
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)131678
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)188400
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5251
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-26
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-02T08:51:17Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-02T08:51:17Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-26
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-26
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-05-02T08:51:17Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-26
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EBIOMEDICINE : 2022
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-07
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b EBIOMEDICINE : 2022
|d 2025-01-07
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DEAL: Elsevier 09/01/2023
|2 APC
|0 PC:(DE-HGF)0125
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21