001031205 001__ 1031205
001031205 005__ 20250203133208.0
001031205 0247_ $$2doi$$a10.1093/cercor/bhae378
001031205 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-05605
001031205 0247_ $$2pmid$$a39344196
001031205 0247_ $$2WOS$$aWOS:001321447500001
001031205 037__ $$aFZJ-2024-05605
001031205 041__ $$aEnglish
001031205 082__ $$a610
001031205 1001_ $$0P:(DE-Juel1)176594$$aJiang, Han-Jia$$b0$$eCorresponding author
001031205 245__ $$aA Layered Microcircuit Model of Somatosensory Cortex with Three Interneuron Types and Cell-Type-Specific Short-Term Plasticity
001031205 260__ $$aOxford$$bOxford Univ. Press$$c2024
001031205 3367_ $$2DRIVER$$aarticle
001031205 3367_ $$2DataCite$$aOutput Types/Journal article
001031205 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1730098473_14591
001031205 3367_ $$2BibTeX$$aARTICLE
001031205 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001031205 3367_ $$00$$2EndNote$$aJournal Article
001031205 520__ $$aThree major types of GABAergic interneurons, parvalbumin-, somatostatin-, and vasoactive intestinal peptide-expressing (PV, SOM, VIP) cells, play critical but distinct roles in the cortical microcircuitry. Their specific electrophysiology and connectivity shape their inhibitory functions. To study the network dynamics and signal processing specific to these cell types in the cerebral cortex, we developed a multi-layer model incorporating biologically realistic interneuron parameters from rodent somatosensory cortex. The model is fitted to in vivo data on cell-type-specific population firing rates. With a protocol of cell-type-specific stimulation, network responses when activating different neuron types are examined. The model reproduces the experimentally observed inhibitory effects of PV and SOM cells and disinhibitory effect of VIP cells on excitatory cells. We further create a version of the model incorporating cell-type-specific short-term synaptic plasticity (STP). While the ongoing activity with and without STP is similar, STP modulates the responses of Exc, SOM, and VIP cells to cell-type-specific stimulation, presumably by changing the dominant inhibitory pathways. With slight adjustments, the model also reproduces sensory responses of specific interneuron types recorded in vivo. Our model provides predictions on network dynamics involving cell-type-specific short-term plasticity and can serve to explore the computational roles of inhibitory interneurons in sensory functions.
001031205 536__ $$0G:(DE-HGF)POF4-5231$$a5231 - Neuroscientific Foundations (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001031205 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x1
001031205 536__ $$0G:(EU-Grant)101147319$$aEBRAINS 2.0 - EBRAINS 2.0: A Research Infrastructure to Advance Neuroscience and Brain Health (101147319)$$c101147319$$fHORIZON-INFRA-2022-SERV-B-01$$x2
001031205 536__ $$0G:(GEPRIS)491111487$$aDFG project G:(GEPRIS)491111487 - Open-Access-Publikationskosten / 2022 - 2024 / Forschungszentrum Jülich (OAPKFZJ) (491111487)$$c491111487$$x3
001031205 7001_ $$0P:(DE-Juel1)131702$$aQi, Guanxiao$$b1
001031205 7001_ $$0P:(DE-Juel1)165640$$aDuarte, Renato$$b2
001031205 7001_ $$0P:(DE-Juel1)131680$$aFeldmeyer, Dirk$$b3
001031205 7001_ $$0P:(DE-Juel1)138512$$avan Albada, Sacha$$b4$$eCorresponding author
001031205 773__ $$0PERI:(DE-600)1483485-6$$a10.1093/cercor/bhae378$$n9$$pbhae378$$tCerebral cortex$$v34$$x1047-3211$$y2024
001031205 8564_ $$uhttps://juser.fz-juelich.de/record/1031205/files/Invoice_SOA24LT010264.pdf
001031205 8564_ $$uhttps://juser.fz-juelich.de/record/1031205/files/bhae378.pdf$$yOpenAccess
001031205 8564_ $$uhttps://juser.fz-juelich.de/record/1031205/files/supplementary_material_bhae378.pdf$$yRestricted
001031205 8564_ $$uhttps://juser.fz-juelich.de/record/1031205/files/bhae378.gif?subformat=icon$$xicon$$yOpenAccess
001031205 8564_ $$uhttps://juser.fz-juelich.de/record/1031205/files/bhae378.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001031205 8564_ $$uhttps://juser.fz-juelich.de/record/1031205/files/bhae378.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001031205 8564_ $$uhttps://juser.fz-juelich.de/record/1031205/files/bhae378.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001031205 8564_ $$uhttps://juser.fz-juelich.de/record/1031205/files/supplementary_material_bhae378.gif?subformat=icon$$xicon$$yRestricted
001031205 8564_ $$uhttps://juser.fz-juelich.de/record/1031205/files/supplementary_material_bhae378.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
001031205 8564_ $$uhttps://juser.fz-juelich.de/record/1031205/files/supplementary_material_bhae378.jpg?subformat=icon-180$$xicon-180$$yRestricted
001031205 8564_ $$uhttps://juser.fz-juelich.de/record/1031205/files/supplementary_material_bhae378.jpg?subformat=icon-640$$xicon-640$$yRestricted
001031205 8564_ $$uhttps://juser.fz-juelich.de/record/1031205/files/Invoice_SOA24LT010264.gif?subformat=icon$$xicon
001031205 8564_ $$uhttps://juser.fz-juelich.de/record/1031205/files/Invoice_SOA24LT010264.jpg?subformat=icon-1440$$xicon-1440
001031205 8564_ $$uhttps://juser.fz-juelich.de/record/1031205/files/Invoice_SOA24LT010264.jpg?subformat=icon-180$$xicon-180
001031205 8564_ $$uhttps://juser.fz-juelich.de/record/1031205/files/Invoice_SOA24LT010264.jpg?subformat=icon-640$$xicon-640
001031205 8767_ $$8SOA24LT010264$$92024-09-05$$a1200206867$$d2024-09-18$$eHybrid-OA$$jZahlung erfolgt$$zUSD 4798
001031205 909CO $$ooai:juser.fz-juelich.de:1031205$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001031205 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176594$$aForschungszentrum Jülich$$b0$$kFZJ
001031205 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131702$$aForschungszentrum Jülich$$b1$$kFZJ
001031205 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131680$$aForschungszentrum Jülich$$b3$$kFZJ
001031205 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138512$$aForschungszentrum Jülich$$b4$$kFZJ
001031205 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5231$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001031205 9141_ $$y2024
001031205 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001031205 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001031205 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-23
001031205 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-23
001031205 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001031205 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-23
001031205 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001031205 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-28$$wger
001031205 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-28
001031205 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-28
001031205 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-28
001031205 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-28
001031205 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-28
001031205 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-28
001031205 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCEREB CORTEX : 2022$$d2024-12-28
001031205 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-28
001031205 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lComputational and Systems Neuroscience$$x0
001031205 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x1
001031205 9801_ $$aFullTexts
001031205 980__ $$ajournal
001031205 980__ $$aVDB
001031205 980__ $$aI:(DE-Juel1)IAS-6-20130828
001031205 980__ $$aI:(DE-Juel1)INM-10-20170113
001031205 980__ $$aUNRESTRICTED
001031205 980__ $$aAPC