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Three major types of GABAergic interneurons, parvalbumin-, somatostatin-, and vasoactive intestinal peptide-expressing (PV, SOM, VIP) 
cells, play critical but distinct roles in the cortical microcircuitry. Their specific electrophysiology and connectivity shape their inhibitory 
functions. To study the network dynamics and signal processing specific to these cell types in the cerebral cortex, we developed a multi-
layer model incorporating biologically realistic interneuron parameters from rodent somatosensory cortex. The model is fitted to in vivo 
data on cell-type-specific population firing rates. With a protocol of cell-type-specific stimulation, network responses when activating 
different neuron types are examined. The model reproduces the experimentally observed inhibitory effects of PV and SOM cells and 
disinhibitory effect of VIP cells on excitatory cells. We further create a version of the model incorporating cell-type-specific short-term 
synaptic plasticity (STP). While the ongoing activity with and without STP is similar, STP modulates the responses of Exc, SOM, and VIP 
cells to cell-type-specific stimulation, presumably by changing the dominant inhibitory pathways. With slight adjustments, the model 
also reproduces sensory responses of specific interneuron types recorded in vivo. Our model provides predictions on network dynamics 
involving cell-type-specific short-term plasticity and can serve to explore the computational roles of inhibitory interneurons in sensory 
functions. 

Key words: inhibitory neurons; spiking neural network; short-term synaptic plasticity; barrel cortex; thalamocortical. 

Introduction 
Cortical GABAergic interneurons are inhibitory neurons that mod-
ulate and limit the degree of neuronal excitability in the neocor-
tex. They can be classified according to electrophysiological or 
morphological characteristics or with molecular markers (Ascoli 
et al. 2008). Although challenges still exist in establishing consis-
tency among different classification methods, many studies in 
recent years have used molecular markers, which label groups 
with different genetic origins, to make significant progress in 
exploring interneuron circuits (Tremblay et al. 2016; Campagnola 
et al. 2022). The three most common types of cortical interneurons 
express parvalbumin (PV), somatostatin (SOM), and vasoactive 
intestinal peptide (VIP), respectively, and play critical but distinct 
roles in cortical microcircuitry (Karnani et al. 2014; Tremblay et al. 
2016; Campagnola et al. 2022). These three types have their own 
specific electrophysiology, morphology, connectivity, and short-
term synaptic plasticity (STP). How these properties are related to 
their distinct dynamics and inhibitory functions is an important 
topic for understanding cortical microcircuitry. 

PV and SOM cells have been extensively studied and compared 
experimentally. PV cells are considered a major stabilizing force 

that produces fast and reliable inhibition, mediated by synap-
tic activities that are weakened in amplitude (depressed) dur-
ing high-frequency stimulation (Beierlein et al. 2003; Silberberg 
and Markram 2007; Hu et al. 2014; Karnani et al. 2014; Naka 
and Adesnik 2016). In contrast, SOM cells act more slowly, and 
have synaptic effects that are initially weak but can increase 
in amplitude (facilitate) in response to sustained high-frequency 
stimulation (Beierlein et al. 2003; Kapfer et al. 2007; Silberberg 
and Markram 2007; Karnani et al. 2014; Yavorska and Wehr 2016). 
Due to their different synaptic dynamics, PV and SOM cells con-
tribute to cortical sensory processing (Natan et al. 2015, 2017; 
Seay et al. 2020) and control oscillatory activity (Chen et al. 2017; 
Van Derveer et al. 2021) in different but complementary ways. 
On the other hand, VIP cell activity results in disinhibition of 
pyramidal cells by inhibiting SOM cells (Lee et al. 2013; Pi et al. 
2013; Karnani et al. 2016a). Distal or neuromodulatory inputs 
have been found to alter the activity of VIP cells to mediate 
disinhibition of sensory signals during different behavioral states, 
such as wakefulness and movements (Lee et al. 2013; Pi et al. 
2013; Fu et al. 2014; Karnani et al. 2016a). Inhibitory interneurons 
thus form an integral part of the cortical computational circuitry,
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with different types contributing to different aspects of inhibitory 
control and complementing each other. 

In addition, interneurons show a high degree of diversity across 
cortical layers. PV, SOM, and VIP cells have different morphologies 
and connectivities across layers (Xu et al. 2013; Prönneke et al. 
2015; Tremblay et al. 2016; Feldmeyer et al. 2018). Furthermore, 
SOM cells exhibit different target preferences (Xu et al. 2013) 
and whisking-related activity (Muñoz et al. 2017) across layers of 
barrel cortex, resulting in layer-specific inhibitory modulation of 
network activity (Xu et al. 2013; Muñoz et al. 2017). The impor-
tance of this cross-layer diversity for computations in the cortical 
column remains largely unexplored (Hahn et al. 2022). 

However, experiments are limited by the number of neurons 
that can be recorded in each animal or sample. In recent years, 
there has been a rapid development of genetic methods that 
allow different types of interneurons to be labeled and studied 
in living brains or brain slices (Huang and Zeng 2013; Huang 
2014). But even with genetic labeling, it is still relatively difficult 
to identify interneurons of a specific type in vivo, especially when 
it is located in deep cortical layers. Furthermore, in vivo paired 
recordings with specific interneuron types are even more techni-
cally challenging, which hinders the study of interneuron-type-
specific synaptic dynamics. Therefore, to systematically study 
the roles of interneuron types, computational studies that take 
the interneuron diversity into account are needed in addition 
to experimental approaches. Computational models can help 
to develop a mechanistic understanding of interneuron func-
tions and lead to hypotheses for experimental studies. In partic-
ular, understanding interneuron function and dynamics across 
layers is essential for the study of the multi-layered cortical 
microcircuitry. 

A number of modeling studies have considered the roles of 
inhibitory neuron types in local cortical circuit dynamics. Yang 
et al. (2016) and Hertäg and Sprekeler (2019) examined how 
mutual inhibition between SOM and VIP cells allows switching 
between two processing modes in which top-down inputs to 
pyramidal cells are either integrated or canceled. Litwin-Kumar 
et al. (2016) studied PV, SOM, and VIP cells in firing rate models 
and revealed their dissociation in firing rate changes in the 
paradoxical effect, where stimulated inhibitory neurons show 
a paradoxical decrease in firing rate (Tsodyks et al. 1997; Murphy 
and Miller 2009; Ozeki et al. 2009). Mahrach et al. (2020) compared 
experimental data of PV cell stimulation with their models and 
found that, compared to a simpler two-population (excitatory 
and inhibitory) model, a model with the three interneuron types 
can reflect more details in the experimental data, showing the 
paradoxical effect whether the network is inhibition-stabilized 
or not. Bos et al. (2020) further investigated the mechanics of 
a network with PV and SOM cells and showed how to predict 
their mean-field behaviors. Lee et al. (2017) and Lee and Mihalas 
(2017) studied the role of the three interneuron types in single-
and multi-column sensory signal processing involving surround 
suppression and contexual modulation. While these studies have 
provided theoretical explanations for the functions of PV, SOM, 
and VIP cells, a model that accounts for their diversity across 
layers is still needed to further understand their roles in a multi-
layered cortical column. A few multi-layer models with interneu-
ron types have been developed based on experimental data 
(Markram et al. 2015; Billeh et al. 2020; Borges et al. 2022; Moreni 
et al. 2023). However, incorporating the layer- and cell-type-
specific electrophysiological properties and synaptic dynamics 
of an interneuron type into the model while maintaining model 
simplicity and low simulation cost still remains a challenge, 

that, if achieved, will allow for more convenient use, adaptation, 
systematic analysis and generalization of the model. 

We therefore developed a new cortical microcircuit model 
adapted from Potjans and Diesmann (2014), that incorporates 
PV, SOM, and VIP cells. This new model includes layer-specific 
electrophysiological and synaptic properties of excitatory neurons 
(Exc) and the three interneuron types. We focus on a mouse 
barrel column, taking parameters from mouse somatosensory 
cortex (S1) when available, complementing these with rat S1 
data. Like Potjans and Diesmann (2014), we use a common and 
computationally low-cost neuron model, the Leaky Integrate-and-
Fire (LIF) point neuron model. With the LIF neuron model, we 
can already capture essential aspects of experimentally observed 
resting-state activity, including cell-type-specific firing rates. To 
study the effects of synaptic dynamics, we also incorporate cell-
type-specific STP parameters derived from experimental data, 
allowing comparisons between model versions with and with-
out STP. We further use a protocol of cell-type-specific stimula-
tion in L2/3 and L4 to study network responses when different 
interneuron types are activated. With this protocol, we reproduce 
experimentally observed inhibitory or disinhibitory effects of PV, 
SOM, and VIP cells. We further show that STP may modulate 
population responses to cell-type-specific stimulation, by altering 
the dominant inhibitory pathways. Specifically, STP qualitatively 
modifies these responses: (1) Exc responses to Exc stimulation 
in L2/3; (2) VIP responses to PV stimulation in L2/3; (3) SOM 
responses to Exc stimulation in L4. We hypothesize and show 
supporting data that this is because STP affects the following 
pathways: (1) Exc→SOM→Exc in L2/3; (2) PV→SOM→VIP in L2/3; 
(3) Exc→PV→SOM in L4. In summary, we created a simple, biolog-
ically plausible, and computationally efficient model for the anal-
ysis of the roles of interneuron types in the cortical microcircuitry. 

Methods 
Model overview 
Our model is adapted from the multi-layer cortical microcircuit 
model by Potjans and Diesmann (2014). We  extend  the  model  
to include three major interneuron types: PV, SOM, and VIP, and 
use only experimental data on mouse and rat somatosensory 
cortex. Figure 1 shows an overview of the populations and 
their synaptic connectivity. All neurons are modeled as LIF 
neurons with exponentially decaying postsynaptic currents (PSCs) 
(https://nest-simulator.readthedocs.io/en/latest/models/iaf_psc_ 
exp.html) (Tsodyks et al. 2000). Figure 2 shows the dimensions 
of the model, which correspond to those of a mouse C2 barrel 
column described previously (Lefort et al. 2009; Petersen 2019). 

Model components 
Populations and neuron parameters 
The model includes four cortical layers with Exc, PV, SOM, and 
VIP cells (Fig. 1, Table 1). The cell numbers of populations in 
each layer are determined as follows. The layer-specific excitatory 
and inhibitory cell numbers (NExc, NInh) are specified according to 
estimates for the mouse C2 barrel column by Lefort et al. (2009). 
The PV, SOM, and VIP cell numbers (NPV, NSOM, NVIP) in each layer 
are determined by distributing NInh: 

Nx = NInh 
fx 

fPV + fSOM + fVIP 
, 

x ∈ {PV, SOM, VIP} (1) 
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Fig. 1. Model overview. (A) Populations and connectivity of the model. Exc: excitatory neurons. PV, SOM, VIP: parvalbumin-, somatostatin-, and vasoactive 
intestinal peptide-expressing inhibitory interneurons. Excbg: background input. Excth: thalamic input. For details of Excbg and Excth, see Background 
input and Thalamic input, Methods. Interneurons in each layer are grouped by boxes (in magenta) to show their average external connections (lines 
to and from the box) and specific internal connections (lines within the box). Thin and thick lines show projections with a connection probability of 
4–8% and ≥ 8%, respectively. Those of < 4% are not shown. Note that in some cases this diagram may only partly reflect the true connectivity, due to 
limited availability of experimental data (see Model parameters, Discussion). (B) L2/3 interneurons and their projections as an example of the cell-type-
specific connectivity associated with interneurons. For simplicity, the excitatory projections are not shown. (C) Connection rules for excitatory (Exc) 
and inhibitory (Inh) populations regardless of layer and interneuron type, following the graphical notation introduced in Senk et al. (2022). The three 
interneuron types are considered together as Inh in (C). Symbol definitions for (C) are as follows: solid and dashed lines: deterministic and probabilistic 
connections. δ: one-to-one connectivity, p: pairwise Bernoulli connectivity, A: autapses allowed,�M: multapses not allowed, w ∼ LN : log-normally 
distributed synaptic weights, w: fixed synaptic weight, d ∼ LN : log-normally distributed synaptic delays. 

Table 1. Neural populations. The cell numbers are based on 
estimated excitatory and inhibitory neuron numbers from 
Lefort et al. (2009) and the relative quantities of PV, SOM, and 
VIP cells from Lee et al. (2010). For simplicity, all VIP cells are 
moved to L2/3. The numbers in parentheses show the VIP cell 
numbers before combining them into a single population. 

Layer Exc PV SOM VIP 

L2/3 1691 90 74 85 (67) 
L4 1656 85 48 (7) 
L5 1095 109 105 (7) 
L6 1288 56 66 (4) 

where fPV, fSOM, fVIP are relative quantities of the three interneuron 
types, obtained from Figs. 2D and 4D in Lee et al. (2010) with 
digitizing tools (see Relative Quantities of Interneuron Types, 
Supplementary Material). Since VIP cells are mostly located in 
L2/3 (Prönneke et al. 2015; Tremblay et al. 2016) and experimental 
data pertaining to their connectivity in other layers is lacking, 
we include all VIP cells in a single population for simplicity. This 
results in 13 populations in total (Table 1). 

The cell-type-specific membrane parameters (Table 2) are  
based on the in vitro data by Neske et al. (2015). Their L2/3 data 
are used for L2/3 and L4 of our model, and their L5 data for L5 
and L6. Their L5 data include two excitatory subtypes, and we 
use weighted mean parameters of the two subtypes according to 
their relative cell numbers. The membrane time constants (τm) are  
further adjusted to approximate the in vivo awake state as follows: 

Watson et al. (2008) reported a decrease in membrane resistance 
(Rm) by 50.9% for excitatory and by 4.9% for inhibitory neurons 
from the Down state to the Up state. The Down and Up states 
are described as periods during which neuronal populations are 
silent and periods of long-duration multineuronal depolarization, 
respectively (Watson et al. 2008). We apply these reductions in Rm 

to the τm of the neurons in our model (Table 2), to approximate a 
change from a silent in vitro to the in vivo awake state. 

The absolute refractory period (τref ) is 2.0 ms for every neuron, 
as in Potjans and Diesmann (2014). 

Synaptic parameters 
Synaptic transmission events are modeled as currents with an 
instantaneous rise and a monoexponential decay. Cortical EPSPs 
consist of mainly the AMPA and the NMDA receptor-mediated 
components (Feldmeyer et al. 2002); however, only the AMPA 
component is considered here. This may be a reasonable approx-
imation since, during ongoing activity, many NMDA receptors 
are presumably blocked due to their voltage dependence in vivo 
(Mayer et al. 1984). The synaptic weights (w) are determined as 
follows. First, the amplitudes of postsynaptic potentials (PSPs) are 
defined (Table 3). EPSPs of intracortical connections are set to 0.5 
mV, which is consistent with the range of in vivo unitary EPSPs 
(Schoonover et al. 2014; Jouhanneau et al. 2015; Pala and Petersen 
2015; Jouhanneau et al. 2018). IPSPs are set to 2.0 mV, four times 
as strong as the EPSPs, as in Potjans and Diesmann (2014). EPSPs  
of the thalamic input follow the values of thalamocortical (TC) 
connections in vivo reported by Bruno and Sakmann (2006). For
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Table 2. Layer- and cell-type-specific neuron parameters. The parameters are based on the data of supra- (L2/3) and infra-granular (L5) 
layers from Neske et al. (2015). The  τm are adjusted to in vivo conditions according to the Down-to-Up-state decreases in membrane 
resistance of excitatory (50.9 %) and inhibitory (4.9 %) neurons reported by Watson et al. (2008) (see Populations and neuron 
parameters, Methods). Numbers in parentheses show τm before adjustment. 

Parameter Definition L2/3, L4 Exc L2/3, L4 PV L2/3, L4 SOM VIP L5, L6 Exc L5, L6 PV L5, L6 SOM 

τm Membrane time constant (ms) 5.2 (10.5) 3.0 (3.1) 11.2 (11.8) 10.4 (10.9) 5.9 (12.1) 3.8 (4.0) 11.1 (11.7) 
Cm Membrane capacitance (pF) 229.8 93.9 123.3 86.5 269.2 81.0 146.8 
Vrest Resting membrane potential (mV) −67.4 −66.4 −59.9 −65.7 −63.2 −67.1 −63.2 
Vth Firing threshold (mV) −41.5 −41.6 −41.8 −43.7 −45.2 −42.3 −48.1 

Table 3. Postsynaptic potentials. These PSP amplitudes are 
defined for the model with static synapses. The PSCs ( Fig. S1, 
left) required to produce such PSPs are calculated with Equation 
(2). In the model with STP, the PSPs and PSCs are dynamic, 
except for the background input. 

Parameter Value (mean±SD 
or fixed) 

EPSPs of intracortical connections 0.5±0.5 mV 
IPSPs of intracortical connections −2.0±2.0 mV 
EPSPs of the thalamic input to Exc and PV 0.49±0.13 mV 
EPSPs of the thalamic input to SOM 0.245±0.065 mV 
EPSPs of the background input 0.5 mV 

thalamic input to SOM cells, the PSPs are set to 50% of the others 
to reflect the reported weaker TC connections to this group of 
neurons ( Ji et al. 2016). The intracortical EPSPs and IPSPs and 
thalamic EPSPs are log-normally distributed in the model to be 
consistent with in vivo (Schoonover et al. 2014; Jouhanneau et al. 
2015; Pala and Petersen 2015; Jouhanneau et al. 2018) and  in 
vitro (Song et al. 2005) data. For intracortical EPSPs and IPSPs, the 
standard deviations are set to the same magnitude as the means 
(e.g. 0.5±0.5 mV). This is also consistent with the in vivo data 
(Schoonover et al. 2014; Jouhanneau et al. 2015; Pala and Petersen 
2015; Jouhanneau et al. 2018), where the standard deviations are 
62–172% of the magnitude of the means. EPSP amplitudes of the 
background inputs are fixed to a value of 0.5 mV. 

Subsequently, the amplitudes of exponentially decaying PSCs 
required to produce the defined PSPs in the different neuron types 
are calculated (Rotter and Diesmann 1999; Maksimov et al. 2018): 

PSC = Cm (a − 1) PSP 
τsyn

(
a1/(1−a) − aa/(1−a)

) (2) 

where Cm is the membrane capacitance, τsyn is the PSC decay 
time constant, and a stands for τsyn 

τm 
with τm the membrane time 

constant. Cm and τm depend on the postsynaptic population 
(Table 2), and τsyn is 2 ms for excitatory (τsyn,Exc) and  4 ms for  
inhibitory (τsyn,Inh) connections (Table 4), which are chosen to 
approximate in vitro data from rat (Feldmeyer et al. 2002) and  
mouse (Ma et al. 2012), respectively. The resulting PSCs are shown 
in Supplementary Fig. S1A and are used as the synaptic weights 
in the model code. 

The synaptic delays dExc, dInh, dth (Table 4) follow  in vivo data on 
excitatory and inhibitory intracortical connections (Jouhanneau 
et al. 2018) and TC connections (Bruno and Sakmann 2006). They 
are log-normally distributed to be consistent with the experimen-
tal data as well. The synaptic delay of the Poisson background 

input (dbg) is fixed to the same value as the integration resolution 
(0.1 ms) because it is irrelevant for network activity. 

Probabilities of intracortical connections 
The intracortical connections are created with pairwise Bernoulli 
trials with projection-specific probabilities (P). Here, a projection 
stands for all connections from one neuron population to another 
(e.g. L4 E→L4 PV) (Senk et al. 2022). P of different projections are 
based on experimentally observed connection probabilities (Pexp) 
in paired recordings of mouse barrel or somatosensory cortex in 
vitro (Galarreta and Hestrin 2002; Kapfer et al. 2007; Lefort et al. 
2009; Hu et al. 2011; Packer and Yuste 2011; Ma et al. 2012; Xu 
et al. 2013; Pala and Petersen 2015; Walker et al. 2016; Karnani 
et al. 2016b; Hilscher et al. 2017; Jouhanneau et al. 2018; Nigro 
et al. 2018; Scala et al. 2019). Since the spatial recording range 
differs among experiments, we adopt a spatial integration that 
uses Pexp to derive P corresponding to the model dimensions 
(Fig. 2). The steps of this derivation are described in Derivation 
of Connection Probabilities, Supplementary Material. We  use  an  
exponential decay for the connection probability (Packer and 
Yuste 2011; Perin et al. 2011), simplifying the distance dependence 
that is in reality shaped in more detail by factors including the 
geometry and density of the neurites. The pairwise Bernoulli rule 
creates only a single synapse between a pair of neurons, according 
to the given connection probability. Thus, it lumps together poten-
tially multiple synapses (multapses; for terminology, see Senk 
et al. (2022)) forming each connection in the brain into a single 
synapse. By choosing larger synaptic weights to reflect potential 
multapses, the only dynamical difference that remains compared 
to modeling each synapse separately is that the corresponding 
transmission delays become identical. In return, the computa-
tional efficiency of the simulations is increased. Since paired 
recordings simultaneously activate all synapses of the source 
neuron onto the target neuron, the synaptic weights that we adopt 
to approximate unitary PSPs observed in such experiments (see 
Synaptic parameters and Fig. 3) naturally fit into this modeling 
scheme. 

Where experimental data are unavailable, we use assumed 
or estimated values for connection probability (Fig. 3). For 
the intra-layer projections, the following rules are applied. (1) 
Exc→PV equals PV→Exc. This is based on the experimental 
observation that connections between pairs of Exc and PV 
cells have a very high probability of reciprocation (Geiger et al. 
1997; Couey et al. 2013; Hu et al. 2014; Koelbl et al. 2015; Qi 
et al. 2017). (2) L5 Exc→SOM, SOM→Exc and SOM→SOM use 
the averages of L2/3 and L4, due to the lack of more precise 
constraints. (3) For L6 Exc→Exc, the connection probability is 
derived from experimental data (Lefort et al. 2009). The other 
projections in L6 use the same values as their counterparts in 
L5, also due to the lack of more precise constraints. For most
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Table 4. Synaptic time constants and delays. The time constants1 are chosen to approximate in vitro data of rats and mice (Feldmeyer 
et al. 2002; Ma et al. 2012). The delays2 are according to in vivo data of rats and mice (Bruno and Sakmann 2006; Jouhanneau et al. 
2018). For dExc and dInh, values of pyramidal and PV cells in Jouhanneau et al. (2018) are used, respectively. 

Parameter Definition Value (mean±SD or fixed) 

τsyn,Exc Decay time constant of excitatory postsynaptic current 2 ms  
τsyn,Inh Decay time constant of inhibitory postsynaptic current 4 ms  
dExc Synaptic delay of recurrent excitatory connections 1.36±0.51 ms 
dInh Synaptic delay of recurrent inhibitory connections 1.43±1.09 ms 
dth Synaptic delay of thalamic input 1.72±0.73 ms 
dbg Synaptic delay of background input 0.1 ms 

1 Exponential decay constants. 2 Latencies from the presynaptic spike to the start of postsynaptic current. 

Fig. 2. Dimensions of the microcircuit model in μm. These dimensions 
are based on the data of a mouse C2 barrel column. The surface area 
is equivalent to 200×300 μm (Petersen 2019). The layer thicknesses are 
according to Lefort et al. (2009). Experimentally observed connection 
probabilities (Pexp) are adjusted to derive model connection probabilities 
(P, see  Fig. 3) that correspond to these dimensions (see Derivation of 
Connection Probabilities, Supplementary Material). 

inter-layer projections, physiologically determined connection 
probabilities are lacking. Therefore, we use the estimated connec-
tion probabilities from Markram et al. (2015) (https://bbp.epfl. 
ch/nmc-portal/welcome.html https://bbp.epfl.ch/nmc-portal/ 
assets/documents/static/Download/layer_download.json https:// 
bbp.epfl.ch/nmc-portal/assets/documents/static/Download/ 
pathways_anatomy_factsheets_simplified.json) as the  Pexp to 
derive P. Since their algorithm is based on morphological data, 
we map their morphological types to our cell types as follows. 
Following Fig. 2 and Table 1 in Markram et al. (2015),  we take the  
pyramidal cells, star pyramidal cells, and spiny stellate cells as 
Exc cells, the large basket cells and normal basket cells as PV 
cells, the Martinotti cells as SOM cells, and the double bouquet 
cells and bipolar cells as VIP cells. Accordingly, for each layer, the 
connection probabilities of morphological subtypes are combined 
by weighted averaging, taking into account their cell numbers in 
the database, to obtain the connection probabilities for Exc, PV, 
SOM, and VIP cells. 

Fig. 3. Connection probabilities (P) in %.∗ indicates data derived from 
paired recording experiments. ∗∗ indicates estimations involving morpho-
logical data, based on Markram et al. (2015). Otherwise, data are based on 
assumptions. For the approaches to obtain these data, see Probabilities of 
intracortical connections, Methods, and Thalamic input, Methods. Excth: 
Thalamic input. Blanks: Probability is zero. 

Overall, 29 of 43 intra-layer connection probabilities and 12 
of 126 inter-layer connection probabilities are directly derived 
from experimental data. For the others, it is still necessary to use 
assumptions and estimations as described above. 

Background input 
The background input (Excbg) for each cell is a homogeneous 
Poisson spike input with a fixed EPSP amplitude of 0.5 mV and a 
constant but cell-type-specific firing rate (rbg). The rbg for each cell 
type is optimized to obtain plausible population firing rates (see 
Parameter optimization and model simulations in the following). 
The background input is always present in all simulations in this 
study. 

Thalamic input 
To model a thalamic input (Excth), we estimate the cell number 
of a barreloid in the ventral posteromedial (VPM) nucleus of 
mouse corresponding to the C2 whisker. We derive a number of 
115, by dividing the total cortical neuron number of our model 
(=6448) by the “Ratio S1/VPM” of rat C2 (=56) from Table 1 in 
Meyer et al. (2013). However, with firings according to touch-
evoked responses of VPM (Fig. 4), this number of cells produces 
much smaller cortical responses (data not shown) in our model 
than in vivo (Yu et al. 2019). Therefore, we double it to create an 
Excth of 230 cells for larger cortical responses. We consider this 
adjustment biologically plausible, as neurons in the barrel cortex 
can respond to several adjacent whiskers with similar response
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Fig. 4. Evolution of thalamic (VPM) firing rate in response to whisker 
touch. (A) Experimental data digitized from Fig. 3F in Yu et al. (2019) (gray 
dots) and the time course fitted with a log-normal function (black line). 
This fitted time course is used for the simulated thalamic input (Excth) 
(see Thalamic input, Methods). (B) Mean firing rates actually generated 
in the thalamic neurons (n=230) in one simulation instance. Shaded 
area: SEM. 

latencies, i.e. they have multi-whisker receptive fields ( Bruno and 
Simons 2002; Le Cam et al. 2011; Staiger and Petersen 2021). 

The Excth is connected to Exc and PV cells in all layers. SOM 
cells are targeted only in L4, and VIP cells (located only in L2/3 
in our model) are not targeted. This arrangement follows the 
pattern of cell-type-specific TC projections reported by Ji et al. 
(2016). The layer-specific connection probabilities (Fig. 3) are  
specified according to the in vivo data from Constantinople and 
Bruno (2013). However, they did not report the connection 
probability for L2/3. Therefore, we estimate it as follows. We 
calculate the L2/3-to-L4 ratio (r L2/3 

L4 
) of the TC synapse number 

per cortical neuron according to the data from Oberlaender 
et al. (2012). Then, assuming the TC connection probability is 
proportional to the average TC synapse number per neuron 
(i.e. assuming the same multiplicity of synapses per pair of 
cortical and thalamic cells for the two layers), the L4 connection 
probability in Constantinople and Bruno (2013) is multiplied by 
r L2/3 

L4 
to obtain the estimated L2/3 connection probability (Fig. 3, 

Excth→L2/3 Exc and Excth→L2/3 PV). The synaptic weights are 
specified according to the in vivo data from Bruno and Sakmann 
(2006) (Table 3). We use these probabilities and weights for Exc and 
PV cells. For SOM cells, we use 50% of these values (Fig. 3, Table 3) 
to reflect their smaller innervation percentages and strengths 
reported by Ji et al. (2016). 

The thalamic stimulation is generated according to the touch-
evoked responses of VPM from Fig. 3F in Yu et al. (2019). The data 
are obtained with digitizing tools and offset along the y-axis to 
zero at stimulus onset (Fig. 4A, gray dots), and then fitted with a 
log-normal function to produce a firing rate time course with 0.1 
ms resolution (Fig. 4A, black line). This time course is generated 
in the form of inhomogeneous Poisson spike trains in all thalamic 
neurons to serve as a transient thalamic input for the model. 
The Poisson spike train of each neuron is generated according 
to this time course but individually randomized by NEST, hence 
producing a certain variability. Fig. 4 shows the time course of the 
mean firing rate that is actually generated in the 230 thalamic 
neurons in one simulation instance (Fig. 4B, gray line). 

Short-term synaptic plasticity 
We created another version of the model that includes all com-
ponents described in the preceding but further incorporates STP 
synapses. The STP synapses are implemented as in the Tsodyks 
model (Tsodyks et al. 2000). This includes a parameter determin-
ing the dynamics of synaptic release probability (U), a facilitation 
time constant (F), and a depression time constant (D). 

Values of U, F, and D for different projections are fitted using 
experimental unitary PSPs that demonstrate STP (Kapfer et al. 
2007; Ma et al. 2012; Hu et al. 2014; Lefort and Petersen 2017). 
For each projection (e.g.  L4 Exc→L2/3 Exc), we created a pair 
of neurons connected with an STP synapse. Then, we let the 
presynaptic neuron fire at the same constant rate as in the corre-
sponding experiment. With this pair of neurons, we ran repeated 
simulations scanning U, F, and D (U: 0.05–1.0 in steps of 0.05; F, D: 
0–1000 ms in steps of 20 ms) to determine the best-fit parameters, 
i.e. the set of U, F, and D that yields the smallest root-mean-square 
error (RMSE) of normalized PSP amplitudes between simulation 
and experiment (see Fig. 5A for examples). The resulting set of 
U, F, and D is used for this particular projection. Note that Lefort 
and Petersen (2017) and Ma et al. (2012) subtracted overlapping 
components of preceding PSPs before calculating PSP amplitudes. 
Such a subtraction is also performed for the corresponding simu-
lation data to ensure an accurate fit (e.g. L4 Exc→L2/3 Exc and L5 
Exc→L6 Exc in Fig. 5A). 

With STP incorporated, the synaptic weights change during 
simulation. Therefore, we scale the synaptic weights of the pro-
jections with STP, so that they evolve to a state that approximates 
the defined static synaptic weights (PSPs as in Table 3, PSCs  as  
in Fig. S1). This results in a model with the fitted STP param-
eters and population firing rates similar to the original model, 
ensuring close comparability between the two model versions. To 
obtain the scaling factors that achieve this, we used a numerical 
approach as follows. For each projection, we created a pair of 
neurons connected with its fitted STP parameters. Then, we let 
the presynaptic neuron fire at the same rate as the corresponding 
population in the model with static synapses. With this pair of 
neurons, we ran repeated 5-s simulations while scaling the initial 
synaptic weight, until the last synaptic weight recorded from the 
simulation deviated less than 0.1 pA from the target (i.e. the 
corresponding PSC in Fig. S1A). The weight scaling factor thus 
obtained is used for this particular projection. Note that because 
this approach relies on the simulated population firing rates in the 
model with static synapses, the obtained scaling factors always 
depend on the random seed and the background inputs used for 
simulation. Figure 5C shows the mean scaling factors across 20 
simulation instances determined with this approach. 

For the two fitting processes described above, the membrane 
parameters of the postsynaptic neuron are set to those of the 
corresponding population (as in Table 2). In the fitting for weight 
scaling, we use presynaptic spike trains with fixed inter-spike 
intervals, as this turned out to yield population firing rates that 
better approximate the original model than fitting with Poisson 
statistics or spike trains taken directly from the original model. 

For the thalamic input, the STP parameters are derived from 
the data by Hu et al. (2014) with the same approach described 
above. However, because the thalamic input itself is transient, 
the described approach for weight scaling does not apply. Instead, 
the weight is simply scaled such that the effective initial weight 
equals the originally defined weight w. Assuming the scaled 
weight is w′, then the effective initial weight is u×w′, where u is the 
initial synaptic release probability (Tsodyks et al. 2000). Therefore, 
we set w′ to w 

u , yielding effective initial weight u × w 
u = w. 

Parameter optimization and model simulations 
In Results, we first present the simulations for the resting state 
(Modeled resting state, Results) and cell-type-specific stimulation 
(Network responses to cell-type-specific stimulation, Results). 
The model for this part is optimized with respect to only the 
firing rates of the background inputs (rbg). This optimization
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Fig. 5. Short-term plasticity parameters. (A) Examples of STP parameter fits for four projections. U, F, and D are STP parameters. U: parameter for release 
probability. F: facilitation time constant. D: depression time constant. Simulation: simulated PSPs with the best-fit STP parameters (the values shown 
above). Experiment: Experimental data on PSP amplitudes. In all cases, PSP data are normalized to the amplitude of the first PSP. For each projection, 
the best-fit STP parameters are determined by minimizing the RMSE of the PSP amplitudes between simulation and experiment. If the experimental 
data include a subtraction of preceding PSPs, such a subtraction is also done for the simulated PSPs. The two sub-panels for L4 Exc→L2/3 Exc and L5 
Exc→L6 Exc show the simulated PSPs before and after subtraction. (B) Best-fit STP parameters of all projections with STP. These best-fit STP parameters 
are used throughout this study for the model with STP. Projections that remain static are not shown. Excth: thalamic input. (C) Mean weight scaling 
factors across 20 simulation instances for the projections with STP. In each simulation, the weight scaling is used to yield a resting state approximating 
the model with static synapses (see Short-term synaptic plasticity, Methods). Blanks: connection probability is zero or the synaptic weight is static. 

is cell-type-specific but layer-independent to limit the number 
of fitted parameters and thereby increase the robustness of 
the model. Different values of rbg for Exc, PV, SOM, and VIP 
cells are scanned to find a combination that results in the 
smallest deviation in population firing rates from the in vivo data 
(Yu et al. (2019); See Table 5 for the criteria values). This only 
includes L2/3 and L4 because incorporating L5 and L6 results in 
large deviations (data not shown), possibly due to insufficient 
experiment-based connection probability data and consequent 
lesser reproduction of the in vivo activity. The deviation is 
quantified by the root-mean-square percentage error of the 
mean population firing rates (t = 10 s to t = 15 s) across  
simulation instances, i.e. for each population, the difference 
between the simulated and the in vivo data is computed as 
a fraction of the  in vivo value, and the root mean square of 
the resultant values is calculated. The parameter scan for this 
optimization is done in two steps, first using a coarse interval 
(500 spikes/s) and then a finer one (100 spikes/s). The resultant 

best-fit rbg combination is used throughout this study unless 
otherwise specified. This optimization process (illustrated in 
Optimization of the Background Input, Supplementary Material) 
is done separately for the cases with static synapses and with 
STP. The resultant model versions are named Base and Base-STP 
respectively. 

Subsequently, we compare the thalamic-input-evoked cortical 
responses of the model with the experimentally observed touch-
evoked responses from Yu et al. (2019) (Network responses to 
thalamic stimulation, Results). In this part, we start from the 
Base model and scan several selected model parameters while 
evaluating the evoked responses. The result of this scan demon-
strates how the selected parameters contribute to the reproduc-
tion of the experimentally observed responses. The model with 
the best-fit responses in this part is named the TC-adjusted 
model. The corresponding version with STP (TC-adjusted-STP) is 
created by applying the same parameter changes to the Base-STP 
model.
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Table 5. Neuronal firing rates of the optimized model. The values represent mean ± SD, median, 25th–75th percentile, and cell number, 
for the model with static synapses (Base), the model with STP (Base-STP), and the experimental data (Experiment). For Base and 
Base-STP, the cell numbers represent all neurons in 20 randomized simulations (n = 20  × population cell number in Table 1). The 
experimental data are from the non-whisking-state firing rates in Table 1 of Yu et al. (2019). The mean firing rates in L2/3 and L4 
(indicated by ∗) are used for background input optimization (see Parameter optimization and model simulations, Methods). 

Exc PV SOM VIP 

L2/3 Base 2.1 ± 2.0, 1.6, 0.8–2.8, 
n = 33,820 

15.6 ± 7.6, 14.6, 9.8–20.2, 
n = 1,800 

2.5 ± 3.2, 1.4, 0.4–3.2, 
n = 1,480 

10.2 ± 7.1, 8.6, 4.6–14.4, 
n = 1,700 

Base-STP 2.2 ± 1.8, 1.8, 1–3, 
n = 33,820 

16.2 ± 6.9, 15.2, 11–20.6, 
n = 1,800 

2.7 ± 3.0, 1.6, 0.6–3.6, 
n = 1,480 

13.3 ± 8.2, 12, 7–18.6, 
n = 1,700 

Experiment 2.7∗ ± 3.7, 0.6, 0.5–4.5, 
n = 5  

13.8∗ ± 8.9, 11.7, 7.5–23.3, 
n = 8  

2.6∗ ± 3.6, 0.4, 0.03–4.1, 
n = 9  

14.6∗ ± 7.3, 11.1, 8.5–21.0, 
n = 9  

L4 Base 0.5 ± 0.6, 0.4, 0.0–0.8, 
n = 33,120 

10.4 ± 5.3, 9.6, 6.4–13.6, 
n = 1,700 

2.5 ± 2.8, 1.6, 0.6–3.6, 
n = 960

-

Base-STP 0.6 ± 0.6, 0.4, 0.2–0.8, 
n = 33,120 

10.5 ± 4.8, 9.6, 6.8–13.4, 
n = 1,700 

2.9 ± 2.9, 2, 0.8–4.2, 
n = 960

-

Experiment 0.5∗ ± 0.8, 0.0–0.7, 
n = 95  

10.2∗ ± 7.2, 7.8, 4.3–14.7, 
n = 43  

2.6∗ ± 3.2, 0.6, 0.3–4.9, 
n = 27

-

L5 Base 2.0 ± 3.1, 0.8, 0.2–2.6, 
n = 21,900 

20.2 ± 12.1, 18.4, 11–27.3, 
n = 2,180 

1.0 ± 2.1, 0.2, 0.0–0.8, 
n = 2,100

-

Base-STP 2.3 ± 3.0, 1.2, 0.4–3, 
n = 21,900 

21.0 ± 10.1, 19.6, 13.6–27, 
n = 2,180 

2.7 ± 3.9, 1.2, 0.2–3.6, 
n = 2,100

-

Experiment 6.8 ± 5.2, 5.2, 2.7–11.2, 
n = 23  

7.5 ± 5.2, 7.6, 4.3–8.7, 
n = 7  

2.8 ± 4.5, 0.8, 0.2–3.6, 
n = 18

-

L6 Base 3.0 ± 5.5, 0.8, 0.0–3.2, 
n = 25,760 

38.4 ± 21.2, 36.6, 22.0–53.5, 
n = 1,120 

5.8 ± 9.2, 1.8, 0.2–7.6, 
n = 1,320

-

Base-STP 3.9 ± 5.2, 2, 0.6–5.2, 
n = 25,760 

33.2 ± 15.7, 32.2, 21.0–44.2, 
n = 1,120 

23.7 ± 16.3, 20.8, 11.2–33.4, 
n = 1,320

-

Experiment 6.1 ± 6.9, 2.6, 0.4–11.5, 
n = 30  

16.9 ± 14.3, 17.2, 4.6–22.0, 
n = 15  

3.9 ± 4.9, 1.7, 0.5–6.9, 
n = 26

-

In the following, we describe the methods used for each of the 
simulation results presented in this study. 

Simulation of network resting state 
The resting state of our model is simulated using only the back-
ground (homogeneous Poisson) input. The neuronal firing rates 
and the asynchronous irregular (AI) activity of this state are calcu-
lated and compared with experimental criteria. The experimental 
firing rates are taken from Yu et al. (2019). The AI activity is 
evaluated according to the study by Maksimov et al. (2018). AI  
activity corresponds to a state of low synchrony and irregular 
neuronal spiking, which exists in LIF neuron networks with sparse 
connectivity and balanced inputs (Brunel 2000) as well as  in vitro 
and in vivo samples (Steriade et al. 2001; Destexhe et al. 2007; 
Dehghani et al. 2016). Based on in vivo data, Maksimov et al. 
(2018) proposed criteria on cortical AI states for modeling studies. 
The study computes the pairwise spike count correlation and the 
coefficient of variation of inter-spike intervals (CV ISI) for in vivo 
data from rat and macaque (Chu et al. 2014; Watson et al. 2016). 
While the values were largely similar for the two species, we here 
consider the criteria based on rat data, which were obtained by 
Maksimov et al. (2018) as follows: for both correlation and CV ISI, 
means of each of 13 recording sessions from awake rat frontal 
cortex were calculated. For CV ISI, the mean across Up states in 
anesthetized rat motor cortex is further provided. 

We evaluate the AI activity of our model with an approach akin 
to that of Maksimov et al. (2018). For each layer, 200 neurons are 
randomly chosen regardless of cell type, to calculate the mean 
pairwise spike count correlation. The same number of neurons 
are chosen separately to calculate the CV ISI. Data from t = 10 s 
to t = 15 s of the simulations are used. For pairwise spike count 

correlation, the bin width is 10 ms, and neurons with no spikes 
during the sampled period are excluded before selection. For CV 
ISI, neurons with a firing rate lower than 1 spikes/s during the 
sampled period are excluded before selection. The results are 
compared with the awake and anesthetized state criteria for rat 
established by Maksimov et al. (2018). 

Simulations of cell-type-specific stimulation 
To study how the network responds to activation of different cell 
types, an additional homogeneous Poisson input with a fixed EPSP 
amplitude of 0.5 mV is applied to each cell type in L2/3 and L4. 
The duration and interval of this input are both 1 s, and it is 
repeated 20 times and for nine levels of firing rate (rstim). The levels 
include rstim = 0 spikes/s and eight other levels, which depend on 
cell type and reach up to maximally 1000 spikes/s. The resultant 
population firing rates in the same layers are calculated for the 
later half of each stimulation period (t = 500 ms to t = 1000 ms 
after stimulus onset). This protocol is performed for Exc, SOM, PV, 
and VIP populations and for L2/3 and L4 separately in dedicated 
simulations. 

We statistically test the stimulus effects on the population 
firing rates in the same layer. The population firing rates are first 
normalized to the case of no stimulation (rstim = 0 spikes/s). 
The data for each stimulus level are then tested for significant 
deviation from 1 (two-tailed one-sample t-test, for 20 simulation 
instances). 

Simulations of thalamic stimulation 
The network responses to thalamic input (see Thalamic input) are 
similarly studied with dedicated simulations. In each simulation, 
the thalamic stimulation is applied every 1 s and repeated 10
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times. Responses of cortical neurons are evaluated in terms of 
population peristimulus time histogram (PSTH) in 0.5 ms time 
bins. For each population, amplitude (apeak) and  time  (tpeak) of  
the peak in the PSTH from t = 0 to t = 50 after stimulus 
onset are calculated. For comparison, apeak and tpeak are obtained 
from the PSTHs of touch-evoked cortical responses in Fig. 3F of 
Yu et al. 2019, which also includes the data up to t = 50 after 
stimulus onset. Similarity between simulation and experiment is 
quantified via the RMSEs of apeak and tpeak. 

Hardware and software configurations for 
simulations 
NEST 3.6 ( Villamar et al.) (https://www.nest-simulator.org/) is  
used for model implementation and simulation. All simulations 
are executed on a computing cluster with 48-core compute nodes 
running at 2.5 GHz. The simulation resolution is 0.1 ms in all 
cases. Each simulation used 24 cores on one compute node, with 
OpenMP (https://www.openmp.org/) for parallel computing. For 
a resting-state simulation of 15 s biological time, both model 
versions take approximately 0.2–0.25 core-hours (∼2s build phase 
and 30–35 s simulation phase on 24 cores). 

For the parameter scans described in Parameter optimization 
and model simulations, 10 simulation instances are run for each 
parameter setting. The other results each rely on 20 simulation 
instances. Each simulation instance uses a unique seed for the 
randomization of Poisson input and network connectivity. 

The simulation duration (biological time) is 15 s for the resting 
state (Simulation of network resting state) and the optimization 
for rbg (Parameter optimization and model simulations), 370 s 
for the cell-type-specific stimulation (Simulations of cell-type-
specific stimulation), and 20 s for all simulations with thalamic 
input (Parameter optimization and model simulations, Thalamic 
input). In all cases, the first 10 s of simulation is excluded from 
analysis to avoid transients. 

Results 
Parameter fits for STP 
As described in Methods, we fit the Tsodyks model to exper-
imental STP data. Figure 5B shows the fitted STP parameters. 
Projections not shown in the figure remain static. For Exc→Exc 
projections (Fig. 5B, bottom), experimental STP data from differ-
ent layers are taken from Lefort and Petersen (2017). For projec-
tions involving interneurons (Fig. 5B, top), experimental STP data 
are limited to L2/3 and L4. Kapfer et al. (2007) reported data involv-
ing L2/3 pyramidal cells, fast-spiking (FS) cells (taken as PV cells in 
our model), and SOM cells (pyramidal→FS, pyramidal→SOM). Ma 
et al. (2012) reported data involving L4 excitatory regular-spiking 
(RS) cells, FS cells, and SOM cells (FS→RS, FS→FS, FS→SOM, 
SOM→RS, SOM→PV). Since, for each of these projections, data are 
available only from one layer (L2/3 or L4), for these projections we 
use the fitted parameters regardless of layer in our model. 

Karnani et al. (2016b) also report experimental STP data involv-
ing different cortical interneuron types, including VIP cells. How-
ever, adding this dataset resulted in an overactive resting state of 
the model (data not shown); therefore, it is not incorporated in 
this study. 

Hu and Agmon (2016) report experimental STP data on cell-
type-specific TC projections. The averaged data on FS and SOM 
cells are listed in their Fig. 1, but those on excitatory cells are not 
provided. Therefore, we digitized the data on FS and SOM cells 
(cell-attached data in the case of SOM cells; see their Fig. 1R) for 
the STP of Excth→PV and Excth→SOM projections in our model. 

For Excth→E, we use the STP of L4 Exc→L2/3 Exc in our model as 
a substitution (Fig. 5B), which we likewise consider a feedforward 
projection in sensory processing. 

Figure 5C shows the mean weight scaling factors across 20 
simulation instances for the model version with STP. Fig. S1 shows 
the resulting mean resting-state weights across 20 simulation 
instances compared to the model version with static synapses. No 
weight scaling is performed for projections that remain static. 

Modeled resting state 
The resting states of the optimized model versions with static 
synapses (Base) and with STP (Base-STP) are shown in Fig. 6. The  
statistics of neuronal firing rates across layers and cell types are 
listed in Table 5 along with the data used for their optimization 
(Yu et al. 2019). 

To evaluate the AI activity of the model, we use the in vivo crite-
ria on pairwise spike count correlation and coefficient of variation 
of the inter-spike intervals (CV ISI) established by Maksimov et al. 
(2018) (see Simulation of network resting state, Methods). We con-
sider the criteria based on awake and anesthetized states in rats. 
For both model versions, the mean layer-specific correlations are 
always within the range of the awake states, and the mean layer-
specific CV ISIs are always between the awake and anesthetized 
states (Fig. 6). This shows that the modeled resting state has an 
AI activity similar to the in vivo condition. Nevertheless, the Base-
STP model shows a correlation in L6 more than two times that in 
the Base model.  

Overall, the differences between the activity statistics of the 
two model versions are small, indicating that STP has only a lim-
ited effect on ongoing activity. We also examined the resting states 
in several model versions with alternative parameter settings, 
giving the same qualitative results (Figs. S4, S7, S10, and  S11). 

To confirm the roles of the recurrent and background inputs 
in the model, we perform resting-state simulations where certain 
recurrent connections are removed (Fig. S17). While removing the 
interlaminar connections does not change the resting state very 
much, removing the intralaminar connections causes an over-
active state where some Exc populations fire at > 100 spikes/s. 
This indicates that the intralaminar connections are important 
in maintaining the resting state. Thus, the simulated activity is 
shaped by both the recurrent and the background inputs. Since 
there is no inhibitory background input, the inhibitory interneu-
rons provide the stabilizing force in maintaining the low-rate 
activity. 

Network responses to cell-type-specific 
stimulation 
To assess inhibitory and disinhibitory effects of the interneuron 
types, we simulated how cell-type-specific stimulation changes 
network activity in L2/3 and L4 (Fig. 7 and 8). In L2/3 of the 
Base model, PV and SOM activation evoke inhibition, while VIP 
activation evokes disinhibition: the Exc firing rate decreases sig-
nificantly with PV (-46.4% at rstim = 1000 spikes/s, P < 0.001) and  
SOM (-72.2% at rstim = 200 spikes/s, P < 0.001) activation, while it 
increases significantly with VIP activation (+10.4% at rstim = 200 
spikes/s, P = 0.004). In L4, PV activation evokes inhibition while 
SOM activation evokes disinhibition: the Exc firing rate decreases 
significantly with PV activation (-84.8% at rstim = 1000 spikes/s, 
P < 0.001), while it increases significantly with SOM activation 
(+11.0% at rstim = 200 spikes/s, P < 0.001). 

The disinhibitory effect of VIP cells on Exc cells may require 
adequately active SOM cells. To examine this, we run the VIP 
stimulation again with a lower background input (rbg) for SOM
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Fig. 6. Resting state of the model with static synapses (A) and with STP (B). Left to right: raster plot of neuronal firings, neuronal firing rate of each cortical 
population, pairwise spike count correlation in each layer, and coefficients of variation of inter-spike intervals (CV ISI) in each layer. For the neuronal 
firing rate, the colored boxplots show the medians, 25th and 75th percentiles, and ranges for all neurons from 20 simulation instances (see Table 5 for 
numerical values). The black boxplots show the corresponding experimental data from Table 1 in Yu et al. (2019) (full ranges are not available). For the 
pairwise spike count correlation and CV ISI, the black bars show means and standard deviations across 20 simulations, and the dashed lines show the 
in vivo criteria as follows. Awake max, Awake min: the maximum and minimum of the means for 13 recording sessions in frontal cortices of awake rats. 
Anesth. Up state: the mean of recorded Up states in motor cortex neurons of anesthetized rats. These values were provided by Maksimov et al. (2018). 

Fig. 7. L2/3 network responses to cell-type-specific stimulation. Each of (A)–(D) shows the changes in population firing rates when one particular cell 
type is stimulated in L2/3. Through stimulating one cell type and observing the responses in the other cell types, these results demonstrate the roles of 
the different interneuron types. rstim: rate of stimulation applied. rnorm: resulting relative population firing rate, normalized to the data at rstim = 0. The  
first row shows results for all L2/3 populations in the original models (Base and Base-STP). The second row compares responses of a specific population 
between the original models and modified models, which reveals effects involving interneurons and their STP (see also Fig. 9 for illustration). Original: 
original model. Static X→Y: STP in X→Y connections is excluded, X and Y being two cell types. rbg ↑ (X), rbg ↓ (X): rbg for cell type X is increased or 
decreased. Details of the stimulation protocol are described in Simulations of cell-type-specific stimulation, Methods. Error bars: SEM across simulation 
instances (n=20) with different randomization seeds. In some cases, the SEM is so small that the bar is not visible. 

cells. When the rbg is lower by 200 spikes/s, the disinhibitory effect 
indeed disappears (Fig. 7D, second row). 

The contrast between inhibitory L2/3 SOM cells and disin-
hibitory L4 SOM cells in our model reproduces the result in the 

experiment by Xu et al. (2013). They suggested that this contrast 
is because of a difference in SOM connectivity that is also observed 
in their experiment, i.e. the SOM→Exc projection being stronger 
in L2/3 but weaker in L4 than SOM→PV. To further test this
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Fig. 8. L4 network responses to cell-type-specific stimulation. Each of (A)–(C) shows the changes in population firing rates when one particular 
population is stimulated in L4. The notations are as in Fig. 7. 50% SOM→PV: the SOM→PV connection probability is reduced to 50% of the original 
value. 

hypothesis with our model, we run the SOM stimulation again 
with lower L4 SOM →PV connection probability. We find that L4 
SOM cells become inhibitory to Exc cells (-4.2% at rstim = 200 
spikes/s, P < 0.001) when the  L4  SOM→PV connection probability 
is reduced to 50% of the original value (Fig. 8C, second row). This 
reduced L4 SOM→PV connection probability (18.2%) is also lower 
than the L4 SOM→Exc connection probability (19.8%). Therefore, 
this result is consistent with the hypothesis proposed by Xu 
et al. (2013), that different SOM connectivity contributes to the 
observed inhibition-versus-disinhibition contrast. 

In the Base-STP model, the interneurons exhibit the same 
inhibitory or disinhibitory effects on Exc cells (Fig. 7 and 8) as  
their counterparts in the Base model. In L2/3, the Exc firing 
rate decreases significantly with PV (−44.6% at rstim = 1000 
spikes/s, P < 0.001) and SOM (−26.0% at rstim = 200 spikes/s, 
P < 0.001) activation, while it increases significantly with VIP 
activation (+9.0% at rstim = 200 spikes/s, P < 0.001). Similar to the 
Base model, the disinhibition of Exc cells upon VIP stimulation 
disappears when rbg for SOM is lower by 400 spikes/s (Fig. 7D, 
second row). In L4, the Exc firing rate decreases significantly with 
PV activation (−80.3% at rstim = 1000 spikes/s, P < 0.001), while it 
increases significantly with SOM activation (+2.5% at rstim = 200 
spikes/s, P < 0.001). The L4 SOM cells also become inhibitory to 
Exc cells (−6.7% at rstim = 200 spikes/s, P < 0.001) when the L4 
SOM→PV connection probability is reduced to 50% of the original 
value (Fig. 8C, second row). 

Although mostly similar, there are still qualitative differences 
in the results between the two model versions. Paradoxically, the 
L2/3 Exc cells in the Base-STP model are initially suppressed 
in response to Exc stimulation (−8.9% at rstim = 375 spikes/s, 
P < 0.001) but become activated with stronger stimulation, while 
those in the Base model are only activated (Fig. 7A). We hypothe-
sized that the STP in Exc→SOM connections contributes to this 
difference. Because the Exc→SOM connections are facilitated, 

the SOM cells may be activated more strongly upon Exc stim-
ulation, and in turn inhibit the Exc cells (Fig. 9A). To examine 
this hypothesis, we run the simulation with the Base-STP model 
but exclude the STP in Exc→SOM connections. With this change, 
the Exc firing rates at all stimulation levels are higher than 
the value at rstim = 0 (Fig. 7A, second row), supporting our 
hypothesis. 

L2/3 VIP cells in the Base model show a slight increase in firing 
rate at the first level of PV stimulation (+2.3% at rstim = 125 
spikes/s, Fig. 7B, first row). In contrast, their counterparts in the 
Base-STP model are suppressed at all levels of PV stimulation. We 
hypothesized that this initial VIP activation reflects a disinhibition 
of VIP cells by PV cells through a PV→SOM→VIP pathway (Fig. 9B). 
We examine this hypothesis with modified model parameters as 
follows. We run the PV stimulation again with the Base model, 
but with a higher rbg for SOM (+50 spikes/s) or a lower rbg for 
VIP (−50 spikes/s). Both modifications result in a higher resting-
state SOM firing rate (4.69 and 3.81 spikes/s, respectively) and 
a significant initial VIP activation in response to PV stimulation 
(+45.8% and +21.1% at rstim = 250 spikes/s, P = 0.038, and  
P = 0.033, respectively; The first case is shown in Fig. 7B, second 
row). This suggests that the effect of the PV→SOM→VIP pathway 
is significant when SOM cells are adequately active. However, a 
similar modification in the Base-STP model produces a much 
smaller initial VIP activation (+3.0% at rstim = 125 spikes/s, P = 
0.02; Fig. 7B, second row), even though the modification is larger 
(+175 spikes/s for rbg for SOM) and produces a higher resting-state 
SOM firing rate (5.9 spikes/s) than in the Base model. Therefore, 
we further hypothesized that the STP in PV→SOM connections 
contributes to this difference (Fig. 9B). To examine this, we run the 
PV stimulation with Base-STP again with higher rbg for SOM, while 
excluding the STP in PV→SOM connections. In this case, the initial 
VIP activation (+31.3% at 250 spikes/s, P = 0.04; Fig. 7B, second 
row) becomes more comparable to the modified Base model. This
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Fig. 9. Possible pathways and STP effects underlying the differences in network responses to cell-type-specific stimulation. (A) When the L2/3 Exc 
cells are stimulated, a feedback inhibition of Exc cells may be mediated through the Exc→SOM→Exc pathway. Facilitation (orange dotted circle) in 
the Exc→SOM projection may enhance this pathway, contributing to the initial suppression of Exc cells. In support of this hypothesis, excluding the 
STP in the Exc→SOM projection keeps the Exc firing rate higher than the value at rstim = 0 (Base-STP). (B) When the L2/3 PV cells are stimulated, the 
VIP cells may be initially disinhibited through the PV→SOM→VIP pathway, if the SOM cells are sufficiently active. Depression (purple dotted circle) in 
the PV→SOM projection may weaken this pathway. In support of this hypothesis, excluding the STP in the PV→SOM projection enhances the initial 
VIP activation (Base-STP). (C) When the L4 Exc cells are stimulated, an inhibition of SOM cells may be mediated through the Exc→PV→SOM pathway. 
Depression in the PV→SOM projection may weaken this pathway. In support of this hypothesis, excluding the STP in the PV→SOM projection changes 
the activation of SOM cells to a suppression (Base-STP). The panels show the same data as in Fig. 7 and 8. 

suggests that the excluded STP accounts for part of the observed 
difference. 

L4 SOM cells in the Base model are suppressed in response to L4 
Exc stimulation (−7.1% at rstim = 200 spikes/s, P < 0.001; Fig. 8A), 
while their counterparts in the Base-STP model are activated 
(+25.2% at rstim = 200 spikes/s, P < 0.001). We hypothesized the 
following mechanism. In the Base model, when the L4 Exc cells 
are stimulated, the L4 Exc→SOM pathway is dominated by the 
Exc→PV→SOM pathway, which suppresses the SOM cells (Fig. 9C). 

In the Base-STP model, however, the facilitated Exc→SOM connec-
tions reverse this dominance. To examine this hypothesis, we run 
the Exc stimulation with the Base-STP model again but exclude 
the STP in Exc→SOM connections. With this change, the SOM cells 
are always suppressed upon Exc stimulation (Fig. 8A, second row), 
as in the Base model. This result supports our hypothesis. 

With the same stimulation protocol, we also examined sev-
eral model versions with modified parameters. We first consid-
ered a “Double-sized” model. This model version is created with
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Fig. 10. Network responses in terms of PSTH upon thalamic stimulation. (A) Responses of the original model. (B) Results with adjusted recurrent 
synaptic weights. Left: RMSEs of L2/3 response peak amplitudes (apeak) between simulation and experiment while scanning three factors: scaling factors 
for synaptic weights from Exc cells of all layers to L2/3 Exc (exc_factor), to L2/3 SOM (som_factor), and to L2/3 VIP (vip_factor) cells. For exc_factor, levels 
from 0.1 to 1.0 are scanned, but only 0.3–0.7 are displayed as the fitness is substantially better at these levels. Right: evoked responses of the best-fit (with 
smallest RMSE) model in the scan. (C) Results with the best-fit parameters from (B) and adjusted thalamic input parameters. Left: RMSEs of response 
peak times (tpeak) between simulation and experiment while scanning three factors: synaptic weight of thalamic input for Exc cells (weight_factor), time 
course of thalamic input to Exc cells (time_factor), synaptic delay of thalamic input to all cell types (delay_factor). Middle and right: evoked responses 
of the best-fit model in the scan. The best-fit parameters in (B) and (C) are indicated by the stars in the heatmaps. The PSTH bin width is 0.5 ms. Crosses 
in the PSTH plots mark the peaks in the experimental data, digitized from Fig. 3 in Yu et al. (2019). Data shown are the means of 10 (heatmaps) or 20 
(PSTH plots) simulation instances, each with 10 repeats of stimulation. 

twice the cell number, and the connection probability of each 
projection is integrated with twice the surface area. Other than 
these changes, the parameters remain the same. The results 
are well preserved in this model version, both with and without 
STP ( Figs. S5 and S6). Similarly, another version of the model 
with adjustments to obtain more realistic TC responses (the TC-
adjusted model; see Network responses to thalamic stimulation in 
the following) also reproduces most of the results (Figs. S8 and S9). 
Finally, we examined the second-best-fit and third-best-fit models 
in the optimization process of the background input, which again 
yields closely similar results (Figs. S12, S13, S14, and  S15). 

Network responses to thalamic stimulation 
Figure 10 shows network responses to thalamic stimulation in 
terms of PSTH. The experimental data used for evaluation are the 
touch-evoked cortical responses from Yu et al. (2019). The Base 
model shows plausible cell-type-specific response amplitudes in 
L4 and L5 (Fig. 10A; crosses show peaks in experimental data), and 
the order of their onsets and peaks also resembles the experimen-
tal data (PV→Exc→SOM; see Fig. 3 in Yu et al. (2019)). However, 
the L2/3 responses are overestimated, and responses in all layers 
occur substantially earlier than in the experimental data. Starting 
from the Base model, we scan two sets of parameters in turn to 
optimize the responses. 

We first explore three parameters to reduce the L2/3 responses 
relative to the other layers. We downscale the synaptic weights 
of all excitatory recurrent (intracortical) projections to L2/3 

Exc, SOM, and VIP cells by factors exc_factor, som_factor, and 
vip_factor, respectively. PV cells are considered the main source 
of inhibition and therefore are not included in the parameter scan 
here. The heatmaps in Fig. 10B show the root-mean-square errors 
(RMSEs) of L2/3 population-specific response peak amplitudes 
(apeak) between simulation and experiment while scaling these 
synaptic weights. The star in the heatmap represents the best-fit 
(i.e. with the smallest RMSE) model, and the PSTH plot shows its 
responses. 

Next, we start from the best-fit model in Fig. 10B to optimize 
the times of the population-specific response peak times (tpeak). 
Because the peaks in the simulation appear to be earlier than the 
experimental data, we up-scale three thalamic input parameters 
to extend the responses as follows. (1) Time course of the tha-
lamic input to Exc cells (time_factor). This is done by extending 
the time course of the input (Fig. 4) horizontally: let f (t) be the 
original time course and f ′(t) be the extended time course, then 
f ′(t) = f (t/time_factor). (2) Synaptic weights of the thalamic input 
to Exc cells (weight_factor). (3) Synaptic delays of the thalamic 
input for all cell types (delay_factor). Figure 10C shows the RMSEs 
of tpeak between simulation and experiment while scaling these 
parameters (heatmaps), and the responses of the best-fit model 
(TC-adjusted; middle PSTH). In addition, the best-fit parameters 
in Fig. 10C are applied to the Base-STP model to create a ver-
sion with STP (TC-adjusted-STP; right PSTH). With STP, six pop-
ulations show significantly different response peak amplitudes 
compared to the model with static synapses (TC-adjusted vs.

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/34/9/bhae378/7779257 by guest on 01 O

ctober 2024

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhae378#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhae378#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhae378#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhae378#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhae378#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhae378#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhae378#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhae378#supplementary-data


14 | Cerebral Cortex, 2024, Vol. 34, No. 9

TC-adjusted-STP, in spikes/s): L2/3 SOM (36.5 vs. 55.4, P = 0.007), 
L2/3 VIP (12.7 vs. 16.6, P < 0.001), L4 SOM (16.7 vs. 41.2, P < 0.001), 
L5 SOM (6.1 vs. 18.4, P < 0.001), L6 Exc (12.3 vs. 16.8, P < 0.001), 
and L6 SOM (20.8 vs. 77.6, P < 0.001). 

Overall, downscaling the selected synaptic weights to appro-
priate levels, especially for Exc cells (exc_factor), results in more 
plausible response amplitudes in L2/3 (Fig. 10B). Then, up-scaling 
the three selected thalamic input parameters to appropriate lev-
els brings the response peaks closer in time to the experimental 
data (Fig. 10C). RMSEs of apeak and tpeak are 117.80 spikes/s and 
5.07 ms in the Base model in Fig. 10A, and are improved to 36.33 
spikes/s and 3.53 ms in the TC-adjusted model in Fig. 10C. 

The RMSE calculation  for  apeak (Fig. 10B) uses zero as the crite-
rion for VIP, and the one for tpeak (Fig. 10C) excludes the L2/3 VIP 
population. This is because there is no obvious VIP response in the 
experimental data (Fig. 3F of Yu et al. (2019)). 

Note that the parameter scan in Fig. 10C includes only the 
thalamic input parameters; hence, the parameters of the cortical 
network are always the same and correspond to the best-fit model 
in Fig. 10B. We examine the resting state and response to cell-
type-specific stimulation of this cortical network, for both the 
static synapse (TC-adjusted) and STP (TC-adjusted-STP) versions. 
The results (Figs. S7, S8, and  S9) reproduce most of those in the 
original model. 

Discussion 
We developed a computational model of a multi-layer cortical 
microcircuit incorporating three major inhibitory interneuron 
types, the PV, SOM, and VIP cells. The model is constrained by 
biologically plausible parameters obtained from mouse and rat 
somatosensory (S1) cortex on these three interneuron types. By 
relying exclusively on data and inferences from S1, the model’s 
self-consistency is enhanced. The model incorporates cell-type-
specific membrane parameters, connection probabilities, and 
STP, which are based on experimental data. It is built with 
leaky integrate-and-fire neurons and is thereby computationally 
low-cost but still plausibly reproduces the in vivo resting state 
of different cell types. The model also reproduces known 
interneuron roles and provides predictions about network 
responses when different neuron types are stimulated as well as 
about the effects of cell-type-specific STP in the inhibitory control 
of the network. With a few adjustments, the model also shows 
plausible responses to thalamic input. Therefore, this model can 
help to theoretically and systematically study the microcircuit 
functions and mechanisms involving interneuron types across 
multiple layers of the somatosensory cortex. In this section, we 
discuss the links to previous studies, the limitations of the model, 
and potential future work. 

Model parameters 
Limited by the availability of experimental data, we use estima-
tions and assumptions for certain model parameters. Here, we 
discuss the reasons for our approaches and their limitations. 

Compared to the anesthetized and in vitro conditions, the 
awake state is generally considered to have lower membrane 
resistance (Rm) and hence a shorter membrane time constant (τm), 
because of frequent synaptic activity (Destexhe et al. 2003). Data 
indeed show that Rm of pyramidal neurons in awake mice is lower 
than in vitro (Petersen 2017). Since in vivo datasets containing 
τm, Rm, resting and threshold potentials of all interneuron types 
(PV, SOM, VIP) are lacking, we used a set of in vitro data (Neske 
et al. 2015) and made an adjustment for the awake state, using 

experimental data on changes in Rm following transitions from 
Down to Up states (see Populations and neuron parameters, 
Methods). The model by Markram et al. (2015) took this issue 
into account by simulating with different levels of extracellular 
calcium concentration. Their approach requires a conductance-
based neuron model with multiple ion channel types. Given that 
the ion channels are not explicitly modeled in this study, we 
compensate for the estimated Down-to-Up-state changes in Rm 

as an alternative approach to better approximating the in vivo 
state. As an aside, note that many in vitro studies use calcium 
concentrations very close to in vivo concentrations; in particular, 
slices showing spontaneous activity tend to have more in-vivo-
like calcium concentrations than silent slices (Maksimov et al. 
(2018), Supplementary Material).  However,  the data from (Neske 
et al. 2015) we use are based on a standard calcium concentration 
of 2 mM for the artificial cerebrospinal fluid, which is higher 
than that generally measured in vivo. In vivo electrophysiological 
experiments with the three types of interneurons could provide 
the data necessary for testing and refining the corresponding 
assumptions. 

As another adjustment to in vivo conditions, we have incorpo-
rated short-term plasticity (STP). While we do not find a large 
effect in the ongoing activity, the model reveals possible STP 
effects on responses to transient stimuli (see Network responses 
to cell-type-specific stimulation, Results, and Network responses 
to thalamic stimulation, Results). The similarity in resting-state 
activity between the models with and without STP is expected, as 
we adjusted the initial synaptic strengths for the STP-based model 
to converge to steady-state values matching the case with static 
synapses. Such a scheme was necessary to enable identifiability 
of STP-based effects separate from further differences between 
the two model versions there would otherwise have been. The 
impact of STP on transient responses is more noticeable for some 
populations than others. Since STP is widely present in cortical 
circuits, it is likely to serve a purpose even for those populations 
that do not show substantial effects in our model. For one, dif-
ferent kinds of transient stimuli beyond TC inputs are likely to 
meaningfully engage STP. Moreover, STP likely has meaningful 
effects at the level of individual synapses, neurons, and groups of 
neurons beyond the population level we study here. For instance, 
theoretical studies have demonstrated a role for STP in working 
memory (Romani et al. 2006; Mongillo et al. 2008; Tiddia et al. 2022) 
and interactions between STP and long-term plasticity (Berberian 
et al. 2017; Deperrois and Graupner 2020). 

Theoretically, EPSP and IPSP driving forces in neurons fluctu-
ate with synaptic activity and associated membrane potential 
changes. However, in vitro and in vivo studies suggest that the 
effects of excitatory inputs sum close to linearly at the soma, pre-
sumably because of the isolation of individual inputs by dendritic 
branches and spines (Leger et al. 2005; Araya et al. 2006). Since 
our neuron model is a point neuron, we only model the effects 
of synaptic inputs on the somatic membrane potential and not 
local effects on the dendrites; and we therefore use current-based 
synapses to capture the linear summation. 

For several intralaminar projections involving SOM cells, con-
nectivity data are lacking for the primary somatosensory cortex 
(Fig. 3). In principle, it would have been possible to fill in gaps in 
the data using connection probabilities from the primary visual 
cortex (V1), e.g. Jiang et al. (2015). However, studies have indicated 
significant differences in connectivity involving SOM cells 
between S1 and V1 (Scala et al. 2019). Therefore, we instead used 
averaged connection probabilities from other layers (see Probabil-
ities of intracortical connections, Methods). We also assumed
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an equal connection probability for Exc→PV and PV→Exc 
projections in layer 4 and 5, where we do not find data for Exc→PV 
projections. This reciprocity is supported by several experimental 
studies (Geiger et al. 1997; Couey et al. 2013; Hu et al. 2014; Koelbl 
et al. 2015; Qi et al. 2017). 

Because data on interlaminar connection probabilities involv-
ing specific interneuron types are lacking, we use the algorithmic 
estimates by Markram et al. (2015) to supplement this part of our 
model. Markram et al. (2015) distinguished the neuron types by 
morphology and provided correlations with molecular markers 
(Fig. 2 and Table 1 in Markram et al. (2015)). As described in Meth-
ods, we calculate average connection probabilities accordingly 
for the projections in our model (e.g. large basket cells and nest 
basket cells express PV; their connection probability data were 
averaged and used for the PV cells in our model), although this 
mapping may not be very precise. With this approach, the result-
ing connection probabilities of interlaminar inhibitory projections 
are mostly <5 % (Fig. 3). Morphological studies have suggested 
that, although some interneurons have axons that are mostly 
confined to their layers of origin, others still have significant 
interlaminar projections (Thomson and Bannister 2003; Kumar 
and Ohana 2008; Packer et al. 2013). Further experimental data on 
functional connectivity can verify if the connection probabilities 
in our model fairly represent these interlaminar projections and 
improve the estimates where necessary. 

It should further be noted that connection probabilities 
obtained from paired recordings in brain slices, such as those 
included in this study, may suffer from underestimation because 
of truncation of axons and dendrites during slice preparation 
(Lefort et al. 2009; Stepanyants et al. 2009; Albada et al. 2022). 
In this regard, more experimental data combining advanced 
neuron classification and connectivity reconstruction methods 
(Kebschull et al. 2016; Gouwens et al. 2020) may improve the 
accuracy of the connectivity in our model. 

Fast-spiking (FS) cells are taken as PV cells to obtain data 
on connection probability or STP in some cases, where molecu-
lar marking is not done in the experiments (Kapfer et al. 2007; 
Hu et al. 2011; Ma et al. 2012). The close relation between FS 
cells and PV cells has been well established in previous rodent 
studies. This includes experiments for several cortical areas such 
as somatosensory cortex, visual cortex, and frontal cortex, by 
means of electrophysiological recordings and antibody labeling of 
individual neurons (Kawaguchi and Kondo 2002; Chattopadhyaya 
et al. 2004; Koelbl et al. 2015). Therefore, we consider the mapping 
of FS data to PV cells to be reliable. 

For simplicity, we do not take into account differences in 
single-neuron firing patterns between the cell types. While these 
probably affect network dynamics to some extent, the effects 
of single-neuron firing patterns may be limited on the network 
level depending on the dynamical state. For instance, when the 
network is squarely in the asynchronous regime, the effects of 
single-neuron bursting may not be obvious (Sahasranamam et al. 
2016). The investigation of the effects of diverse single-neuron 
firing patterns in the present model is left to future work. 

The firing rates of the background inputs (rbg) are  optimized  
to obtain plausible resting-state population firing rates. We found 
that the resulting rbg shows a pattern of PV > Exc > VIP > SOM, 
which is also found in some experimental data of long-range 
inputs to these cell types in S1 in recent studies (Naskar et al. 
2021; Martinetti et al. 2022). This indicates that our optimiza-
tion is biologically plausible at least in this respect. The level of 
background input is also similar to that in the model of Potjans 
and Diesmann (2014). The effective strength of the external drive 

onto excitatory cells is 5000 spikes/s × 0.5 mV/spike = 2500 mV/s, 
similar to that in Potjans and Diesmann (2014), which is 2000 
× 8 spikes/s × 0.15 mV/spike = 2400 mV/s. This similarity also 
holds for the average onto the inhibitory cells (2091 vs. 2220 mV/s). 
Compared to Potjans and Diesmann (2014), we use a stronger 
unitary weight, which is based on data from paired recording 
experiments, but the summed strength of the external input is 
approximately conserved. Note, however, that the spatial extent 
of our model is 0.06 mm2 as opposed to the 1 mm2 of the Potjans 
and Diesmann (2014) model, so that our circuit includes a smaller 
percentage of the sending neurons, and a larger percentage of 
the input to the neurons is provided by the external drive. That 
the external drive is nevertheless close to that in their model 
appears mostly related to the different neuron parameters, which 
are cell-type-specific in our model but were taken to be cell-type-
independent in the model of Potjans and Diesmann (2014). 

Incorporating further interneuron diversity should be consid-
ered as a next step. In addition to connectivity, SOM and PV cells 
also have very diverse morphologies across layers (Muñoz et al. 
2017; Feldmeyer et al. 2018; Gouwens et al. 2019). Although the 
vast majority of VIP cells are located in L2/3, smaller numbers 
still exist in the deeper layers which show different dendritic 
and axonal projection patterns (Prönneke et al. 2015). It was also 
revealed recently that a possible subgroup of PV cells can mediate 
a thalamus-driven disinhibition in L4 (Hua et al. 2022). How this 
diversity of interneurons contributes to inhibitory control and 
computation in the cortical column can be investigated in future 
by extending and refining our model. 

Short-term synaptic plasticity 
By fitting post-synaptic potentials to the model of Tsodyks et al. 
(2000), we systematically determined cell-type-specific parame-
ters of short-term plasticity (STP) that may be useful for future 
modeling studies. As explained in Methods, the synaptic weights 
of the model with STP (Base-STP) are scaled so that its resting-
state synaptic weights are close to those set for the model with 
static synapses (Base). This ensures that the two model versions 
have similar resting states so that responses to stimulation can be 
fairly compared. This also means that the Base-STP model repro-
duces the in vivo state just as well as the Base model, but under 
synaptic depression and facilitation. This allows computational 
studies of STP effects. Since the in vivo synaptic weights before 
depression and facilitation are difficult to measure or estimate, 
incorporating STP parameters as we have done provides a tool 
complementing what is possible experimentally. 

Similar to the Base model, the AI activity in the Base-STP model 
is consistent with that observed in vivo, as assessed using criteria 
compiled by Maksimov et al. (2018). The main difference is that 
the average L6 pairwise spike count correlation in the Base-STP 
model is more than twice as large as that in the Base model 
(Fig. 6B). Although synchronized oscillatory activity in the cortex 
has sometimes been considered to be generated by intrinsic cell 
membrane mechanisms (Silva et al. 1991; Le Bon-Jego and Yuste 
2007; Hayut et al. 2011), it has also been linked to the specific 
connectivity and synaptic dynamics of PV and SOM cells (Le Bon– 
Jego and Yuste 2007; Fanselow et al. 2008; Chen et al. 2017; Funk 
et al. 2017; Veit et al. 2017; Domhof and Tiesinga 2021). Future 
work can investigate whether synaptic dynamics indeed increases 
L6 correlations in in vivo circuits as predicted by our model. 

Cell-type-specific stimulation 
Results of cell-type-specific stimulation in L2/3 shows that PV 
and SOM cells are inhibitory and VIP cells are disinhibitory to
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the Exc cells (Fig. 7), consistent with expectations based on the 
experimental literature (Beierlein et al. 2003; Kapfer et al. 2007; 
Silberberg and Markram 2007; Lee et al. 2013; Pfeffer et al. 2013; Pi 
et al. 2013; Hu et al. 2014; Karnani et al. 2014; Naka and Adesnik 
2016; Yavorska and Wehr 2016; Karnani et al. 2016a). Furthermore, 
several model versions with modified parameters also reproduce 
these results (Figs. S5, S6, S12, S13, S14, S15), confirming the 
robustness of the model. 

Several results in L2/3 may be of interest for further study: 
(1) with Exc cell stimulation, the VIP cells are suppressed in both 
the Base and Base-STP models. This may be due to the activation 
of SOM cells and a consequent SOM→VIP inhibition, as this 
SOM→VIP projection is supported by experimental data (Karnani 
et al. 2016b) and implemented in our model as well. (2) With Exc 
cell stimulation, the Exc cells in the Base-STP model are paradox-
ically suppressed initially with weak stimulation strengths, then 
become activated again with stronger stimuli. The initial damp-
ening may be due to the facilitated Exc→SOM projection, which 
could enhance the activation of SOM cells and in turn suppress 
the Exc cells (Fig. 9A). (3) VIP cells in the Base model tend to be 
initially activated in response to PV stimulation. We hypothesized 
that this is because the direct PV→VIP inhibition is weaker than 
the disinhibition of VIP cells through a PV→SOM→VIP pathway. 
The depressing PV→SOM projection in the Base-STP model may 
reduce this dominance, and hence weaken the disinhibition of VIP 
cells (Fig. 9B). We tested the hypothesized STP effects in (2) and 
(3) by excluding the STP of corresponding projections and 
obtained supporting results (Fig. 7A and B). However, there is 
still a possibility that other factors also contribute in parallel 
to the observed differences, e.g. STP of other projections. These 
predictions should be examined in further experimental or 
theoretical studies. 

With L4 cell-type-specific stimulation in our model, we observe 
the following: (1) L4 SOM cells show a disinhibitory effect on L4 Exc 
cells, in contrast to L2/3 SOM cells, which show an inhibitory effect 
(Fig. 8C). We believe this reflects the higher SOM→PV connection 
probability in L4 than in L2/3 in our model (36.30% vs. 11.81%; 
see Fig. 3), consistent with the experiment by Xu et al. (2013) (see 
Comparisons with relevant models in the following). The result 
shows that our model can reflect layer-specific roles of SOM 
cells. (2) L4 Exc stimulation suppresses L4 SOM cells in the Base 
model, but activates them in the Base-STP model. The suppression 
in the Base model may be because the Exc→SOM projection is 
dominated by the Exc→PV→SOM pathway, while the depressing 
PV→SOM projection in the Base-STP model may override this 
dominance (Fig. 9C). We tested this hypothesis by excluding the 
STP of the PV→SOM projection and obtained supporting results 
(Fig. 8A). Like those in L2/3, these results are worth further exper-
imental or theoretical studies. 

In both model versions, the sensitivity of Exc, PV, SOM, and 
VIP cell activity to the stimulation of their own populations is 
very different. The slopes of the normalized stimulation-induced 
firing rates in L2/3 are ordered as SOM>VIP>Exc>PV (Fig. 7 and 8). 
To the best of our knowledge, the available experimental data 
do not allow for direct comparison with this result, for lack of 
analogous cell-type-specific stimulation experiments. Therefore, 
the result provides another prediction, which can be examined by 
future experiments distinguishing the given cell types. A possible 
cause for the observed difference in sensitivity is the cell-type 
specificity of the membrane time constants in L2/3, which also 
follow the order SOM>VIP>Exc>PV (Table 2). This is because a 
larger membrane time constant increases the area under the 
PSPs onto the cell and hence the probability of the cell being 

brought to fire. With further analytical methods, our model can 
help to predict other neuronal or circuit-level factors behind this 
result. 

Thalamic stimulation 
We assess the capability of our model to simulate sensory 
responses by comparing with the in vivo data (Yu et al. 2019). 
In response to thalamic stimulation, the Base model shows a few 
plausible cell-type-specific responses but still has substantial 
discrepancies (Fig. 10A). There may be a few causes for these 
discrepancies. 

To determine the cause for the overestimated L2/3 responses, 
we tested the thalamic stimulation in a model version without 
L4 Exc→L2/3 Exc connections and found that the L2/3 responses 
became much smaller than the in vivo data (data not shown). 
This suggests that the feedforward excitatory projections from L4 
to L2/3 are the main source of excitation for the L2/3 responses, 
transmitting the thalamic input indirectly. As described in Meth-
ods, we based the connection probabilities and STP of Exc→Exc 
projections on layer-specific experimental data. However, the STP 
of all other projections and all synaptic weights in our model 
are not layer-specific. The impact of layer specificity of these 
parameters may be investigated as corresponding data becomes 
available. To improve the L2/3 responses in the present study, we 
perform a parameter scan including synaptic weights of recurrent 
excitatory projections to the L2/3 populations. The best-fit model 
in this scan shows plausible L2/3 response amplitudes (Fig. 10B). 

Also the timings of TC responses are not perfectly predicted. 
In part, this may reflect the fact that some external inputs asso-
ciated with sensory responses are missing in our model. For 
example, higher-order or non-specific thalamic nuclei such as 
the posterior medial nucleus (POm) may contribute to longer 
responses (Zhang and Bruno 2019). Indirect or feedback inputs 
from other barrel columns or even cortical areas may also sub-
stantially extend the responses (Aronoff et al. 2010; Minami-
sawa et al. 2018). These inputs have not been considered here 
as we only incorporate the VPM nucleus. In the absence of the 
corresponding parameter values, we examine the possibility of 
extending the responses by scanning three thalamic input factors. 
Figure 10C shows that up-scaling the three selected factors helps 
to bring the response timings closer to the experimental data. 
This result suggests that incorporating further external inputs can 
help to similarly reproduce the experimentally observed response 
properties. 

We also compare the TC-adjusted model with and without STP 
(Fig. 10C). The response peak amplitudes are different in a few 
populations, mainly the SOM cells. This may reflect the higher 
resting-state SOM firing rates in the Base-STP model (Table 5). On 
the other hand, almost all Exc and PV populations, comprising 
most of the neurons, do not show a significant difference. As in 
the case of cell-type-specific stimulation, we believe the overall 
similarity is associated with similar resting states. However, it may 
also be related to the transient nature of the stimulation, which 
diminishes the STP effects that need a longer time to manifest. 
Given the association between STP and frequency responses of 
neurons (Beierlein et al. 2003), whether other qualitative differ-
ences will appear with different types of stimulation (e.g. longer 
duration or higher frequency) can be the next subject of study. 

Comparisons with relevant models 
In recent years, increasing attention has been devoted to incor-
porating the major interneuron types in modeling studies to 
understand cortical microcircuit dynamics and signal processing
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(Litwin-Kumar et al. 2016; Yang et al. 2016; Del Molino et al. 
2017; Lee and Mihalas 2017; Lee et al. 2017; Hertäg and Sprekeler 
2019; Mahrach et al. 2020; Sanzeni et al. 2020; Borges et al. 2022; 
Hertäg and Clopath 2022; Guo and Kumar 2023; Moreni et al. 2023; 
Wagatsuma et al. 2023). In particular, several multi-layer models 
of cortical areas S1 and V1 incorporating multiple interneuron 
types have been developed (Markram et al. 2015; Billeh et al. 2020; 
Borges et al. 2022; Moreni et al. 2023). Morphological or physiolog-
ical data from S1 (Markram et al. 2015; Billeh et al. 2020; Borges 
et al. 2022) or V1 (Billeh et al. 2020; Moreni et al. 2023) were used  
to derive neuron and connectivity parameters and to establish 
models with LIF (Markram et al. 2015; Billeh et al. 2020; Moreni 
et al. 2023) or multi-compartment (Markram et al. 2015; Billeh 
et al. 2020; Borges et al. 2022) neurons. With these models, network 
synchrony (Markram et al. 2015), oscillatory activity (Moreni et al. 
2023), and selective sensory responses (Billeh et al. 2020) were  
studied. Moreni et al. (2023) showed how gamma oscillations 
around 30 Hz may arise in the presence of synaptic plasticity. Our 
model displays higher-frequency gamma oscillations that have 
not been observed experimentally in this form. The frequency and 
amplitude of gamma oscillations in models based on balanced 
random networks depends on a multitude of factors, the exam-
ination of which is beyond the scope of this study. For preliminary 
work on a thorough investigation of this issue, see Essink et al. 
(2020). 

Our model is adapted from Potjans and Diesmann (2014) with 
major parameter changes. As described, we base the model exclu-
sively on data from mouse and rat somatosensory cortex and 
incorporate three interneuron types and their cell-type-specific 
STP. The model of Potjans and Diesmann (2014), which groups 
the inhibitory interneurons into a single population per layer, 
already reproduces several aspects of resting-state activity and 
sensory responses. Thus, distinguishing the interneuron types is 
not necessary to account for major properties of the low-rate 
AI resting state. However, distinguishing these cell types enables 
relationships between the structure and dynamics of the cortical 
microcircuitry to be explored in more detail. 

Based on experimental data on rat somatosensory cortex, 
Markram et al. (2015) constructed an in silico cortical microcircuit 
with a multicompartmental and conductance-based neuron 
model. As mentioned, they estimated microcircuit activities 
under different extracellular calcium concentrations to mimic 
differences between in vitro and in vivo data. The authors also sim-
ulated a thalamic activation of the microcircuit and reproduced 
the response pattern of cortical neurons in experimental data 
(Fig. 17 in Markram et al. (2015)). Compared to the highly detailed 
model of Markram et al. (2015), our model can be used to more 
easily simulate and mechanistically analyze cell-type-specific 
network dynamics, with smaller computational resources. 

Mahrach et al. (2020) studied the paradoxical effect, where 
stimulation reduces rather than increases the firing rate of 
inhibitory cells (Tsodyks et al. 1997; Murphy and Miller 2009; 
Ozeki et al. 2009). They stimulated PV cells in vivo in mouse 
anterior lateral motor cortex and barrel cortex and compared the 
results with those of a computational model. Their model is able 
to reproduce the paradoxical effect found in experimental data 
and provides predictions on the underlying parameter values. 
Specifically, for their “Model 1”, the paradoxical effect of PV cells 
depends on JSV(JEEJVS − JESJVE), where  JXY stands for the interaction 
strength from population Y to X (X, Y ∈ {E, S, V}; E, S, V stand for 
Exc, SOM, and VIP cells, respectively). In their theory, if JEE is small 
enough to make JSV(JEEJVS − JESJVE) negative, the PV cells should 
show the paradoxical effect. Here, we compare the L2/3 part of 

our model with their Model 1, which both have Exc, PV, SOM, and 
VIP cells. With our original parameters, the paradoxical effect is 
absent (Fig. 7B and S16A). As an effort to eliminate differences 
between their model and ours that could block the paradoxical 
effect, we tested our L2/3 network (1) with JEE being zero or very 
weak (down to 1/128 of the original), which predicts a paradoxical 
effect in their model, (2) without the extra projections (VIP→Exc, 
VIP→PV, VIP→VIP) and layers (L4 to L6) that are not present in 
their model, (3) with very weak stimulation strength for PV cells 
(down to 1 spike/s with a PSP amplitude of 0.5 mV), and (4) with 
a double-sized model. We did not observe a paradoxical effect for 
(1) to (3) but found a slight initial decrease in PV activity (-1.2% and
-1% at stimulation strengths of 12.5 and 25 spikes/s, respectively) 
with the double-sized model (Fig. S16H). Both Mahrach et al. (2020) 
and another similar study by Sanzeni et al. (2020) indicated that a 
network size smaller than the ones they studied (76,800 neurons 
and a cortical surface area of 500+ μm diameter, respectively) 
may fail to show a paradoxical effect. The fact that we observe 
a slight paradoxical effect in an up-scaled model is consistent 
with their inference, although further studies may be required to 
reveal the mechanisms in detail. 

Bos et al. (2020) used a spiking neuron model to analyze 
the influence of PV and SOM cells and showed that the role 
of SOM cells depends on two particular pathways: When the 
SOM→PV→Exc pathway dominates, SOM cells are disinhibitory, 
whereas when SOM→Exc and PV→PV dominate, SOM cells are 
inhibitory. Experimental results indicate that SOM cells can 
indeed be inhibitory or disinhibitory depending on the circuitry, 
as they show inhibitory effects in L2/3 but disinhibitory effects in 
L4 (Xu et al. 2013). We tested the pathway dependence of these 
effects in our model, considering the L4 SOM cells. With our 
original connectivity, the L2/3 SOM cells are inhibitory and L4 
SOM cells are disinhibitory (Fig. 7C and 8C), which is consistent 
with Xu et al. (2013). By changing the L4 SOM→L4 PV connection 
probability, we also found that the L4 SOM cells can be either 
inhibitory or disinhibitory (Fig. 8C), reproducing the findings of 
Bos et al. (2020). These results are consistent with the theories and 
experimental observations that layer- and population-specific 
connectivity contributes to the layer-specific roles of SOM cells 
(Xu et al. 2013; Muñoz et al. 2017; Bos et al. 2020). 

It should be noted that the layer-specific roles may ultimately 
depend on the neuronal subgroups involved, especially Martinotti 
vs. non-Martinotti SOM cells (Xu et al. 2013; Muñoz et al. 2017; 
Emmenegger et al. 2018). Such SOM cell subgroups are not explic-
itly considered in our model yet. Nevertheless, the layer-specific 
connectivity data we used are associated with these subgroups 
and can approximately reflect their laminar distributions. Our 
references include L2/3 Martinotti cells (Xu et al. 2013; Walker 
et al. 2016), L4 Non-Martinotti cells (Xu et al. 2013; Scala et al. 
2019), and L5 Martinotti and Non-Martinotti cells (Hilscher et al. 
2017; Nigro et al. 2018). An adaptation of our model that explicitly 
incorporates SOM cell subgroups will allow further studies on this 
topic. Further refinements may include additional interneuron 
(sub)types, such as those in layer 1 (Egger et al. 2015), which is 
not yet considered in our model. 

Outlook 
Our model can be used as a convenient template for compu-
tational studies of complex mechanisms such as the effects of 
neuromodulators on sensory signal processing. Being based on 
the LIF neuron model, mean-field analyses can provide mecha-
nistic explanations of the population-level dynamics, and predict 
network activities with different parameters or inputs without
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running simulations (Layer et al. 2022). This can help to facili-
tate the exploration of the effects of cell and connection prop-
erties and examine the hypotheses we have proposed on the 
main pathways underlying the suppression and enhancement 
of cell-type-specific activity (see Cell-type-specific stimulation 
in the preceding). In particular, a mean-field analysis incorpo-
rating synaptic STP (Romani et al. 2006) may help reveal the 
mechanisms underlying the association between STP and the 
roles of different types of interneurons. A further future step 
can be to use data from public anatomical databases on barrel 
cortex, such as BarrelCortexInSilico (Udvary et al. 2022) (https:// 
cortexinsilico.zib.de/), that can help improve the model with more 
details on connectivity and other parameters. These further devel-
opments will allow more refined and systematic explorations of 
the roles played by different types of interneurons in cortical 
circuits. 
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