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ABSTRACT: Cryogenic field-effect transistors (FETs) offer great
potential for applications, the most notable example being classical
control electronics for quantum information processors. For the latter,
on-chip FETs with low power consumption are crucial. This requires
operating voltages in the millivolt range, which are only achievable in
devices with ultrasteep subthreshold slopes. However, in conventional
cryogenic metal-oxide-semiconductor (MOS)FETs based on bulk
material, the experimentally achieved inverse subthreshold slopes
saturate around a few mV/dec due to disorder and charged defects at
the MOS interface. FETs based on two-dimensional materials offer a
promising alternative. Here, we show that FETs based on Bernal
stacked bilayer graphene encapsulated in hexagonal boron nitride and
graphite gates exhibit inverse subthreshold slopes of down to 250 μV/dec at 0.1 K, approaching the Boltzmann limit. This result
indicates an effective suppression of band tailing in van der Waals heterostructures without bulk interfaces, leading to superior device
performance at cryogenic temperature.
KEYWORDS: Bernal stacked bilayer graphene, band gap, subthreshold slope, disorder

Field-effect transistors operable at cryogenic temperatures
are an ongoing area of research with potential applications

in outer space electronic devices,1−5 semiconductor-super-
conducting coupled systems,6 scientific instruments such as
infrared sensors,5,7,8 and notably control electronics in
quantum computing.9−14 The distinct advantages of operating
at cryogenic temperatures include reduced power dissipation,
minimized thermal noise, and faster signal transmission.1,15,16

The significance of cryogenic control electronics is especially
apparent in the context of quantum information processing,
where the availability of control electronics in close proximity
to the qubits is seen as a necessary condition for operating
large quantum processors with thousands of qubits.11,14,17−20

However, developing cryogenic electronics for quantum
computing applications poses significant challenges due to
the limited cooling power of dilution refrigerators. One of the
requirements is to reduce the operational voltage range of the
FETs into the mV range,21 which, in turn, requires devices
with ultrasteep subthreshold slopes. Temperature broadening
effects impose a lower limit−the so-called Boltzmann limit−to
the inverse subthreshold slope (SS) given by SSBL = kBT/e ·
ln(10), where T is the operating temperature and kB the
Boltzmann constant. Thus, the inverse SS is expected to
decrease from 60 mV/dec at room temperature to as low as,
e.g., 20 μV/dec at 0.1 K. However, experiments with
conventional FET devices optimized for low-temperature
operation have shown that the inverse SS saturates at
considerably higher values in the order of 10 mV/dec at

cryogenic temperature.22−25 This saturation originates mainly
from static disorder at the metal-oxide-semiconductor (MOS)
interface (due to, e.g., surface roughness, charged defect-
s,etc.).23,24,24−27 This contributes to the formation of a finite
density of states (DOS) near the band edges, which decays
exponentially into the band gap.28 This so-called band-tailing
leads to deteriorated off-state behavior and limits the
achievable SS. This effect is further enhanced by dopants,
which could either freeze out or become partially ionized.21,29

Interface engineering can improve the MOS interface,30 but in
MOSFETs based on bulk materials, inherent disorder at the
interfaces and charged defects within bulk dielectrics cannot be
fully eliminated.

FETs based entirely on van der Waals (vdW) materials are a
promising alternative because these materials offer atomically
clean interfaces, as there are no dangling bonds in the vertical
direction. Particularly promising for cryogenic applications are
vdW-heterostructures based on Bernal stacked bilayer
graphene (BLG).34 Indeed, it has been shown that by
encapsulating BLG into hexagonal boron nitride (hBN) and
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by placing it on graphite (Gr), it is possible to open a tunable,
ultraclean, and spatially homogeneous band gap in BLG by
applying an out-of-plane electric displacement field.31,35,36

Such BLG-based heterostructures can be seen as an electro-
statically tunable semiconductor.32,37,38 The high device
quality allowed the realization of BLG-based quantum point
contacts38,39 and quantum dot devices.40−42 Further incorpo-
rating graphite top gates (tg) instead of state-of-the-art gold
top gates in the BLG heterostructures promises a further
reduction of disorder as recent publications reported magnetic
and even superconducting phases hosted in the valence and
conduction bands of BLG.43−45 In this work, we demonstrate
the enhanced device quality of dual graphite-gated BLG,
evident in ultraclean band gaps and ultrasmall inverse
subthreshold slopes, establishing vdW-material-based hetero-
structures as an ideal platform for cryogenic FETs. We use
finite bias spectroscopy to show that the band gap tunability is
enhanced in pure vdW BLG heterostructures with almost no
residual disorder. By extracting the inverse subthreshold slopes,
we obtain values as low as 250 μV/dec at T = 0.1 K, which is
only an order of magnitude larger than the Boltzmann limit of
20 μV/dec at this temperature. These results demonstrate the
effective suppression of band tailing, leading to superior
cryogenic device behavior of FETs based on vdW materials
compared to conventional FETs.

The studied devices are fabricated by a standard dry van-der-
Waals transfer technique.46,47 The process involves the
sequential stacking of hBN, graphite and BLG flakes produced
by mechanical exfoliation.48 First, a large hBN flake is selected
to completely cover the top graphite gate, which is picked up
in the second step. The (top) graphite gate is encapsulated in
another hBN flake which acts as the top gate dielectric. We
then pick up the BLG, a third hBN flake (bottom gate
dielectric), and the bottom graphite gate and transfer the vdW
heterostructure to a Si++/SiO2 substrate. The exact thicknesses
of the used hBN dielectric layers (mainly ≈20 nm) can be
found in the Table S1. Complete encapsulation of the BLG in
hBN is essential to prevent degradation and short circuits to
the graphite gates. One-dimensional side contacts are then
fabricated using electron-beam lithography, CF4-based reactive
ion etching and metal evaporation followed by lift-off.46 A
schematic of the final device, including the gating and
contacting scheme, is shown in Figure 1a (an optical image
can be found in the Figure S1). If not stated otherwise, all
measurements were performed at T = 0.1 K in a dilution
refrigerator with a two-terminal configuration, where we
applied the drain-source voltage symmetrically (for more
information on the measurement setup, see ref 32).

As a first electrical characterization, we measure the drain
current Id as a function of top and bottom gate voltage by
applying a small drain-source voltage Vds = 100 μV. Figure 1b

Figure 1. (a) Schematic illustration of a bilayer graphene-based FET. In the active area of the device, the hBN-BLG-hBN heterostructure (see
inset) is sandwiched between a top and bottom graphite gate. These gates allow for an independent tuning of the displacement field D and the
effective gate voltage Vg. The drain-source voltage Vds is applied symmetrically in all our measurements. (b) Resistance (R = Vds/Id) of the BLG as a
function of Vbg and Vtg at T = 1.6 K and Vds = 1 mV. The blue arrows indicate the directions of increasing displacement field D and Vg. (c)
Calculated band structure of BLG around one of the band minima for different displacement fields (see labels). (d) Differential conductance dI/
dVds as a function of Vds and Vg (at T = 0.1 K) for different displacement fields (see labels in c). The band gap Eg can be extracted from the
extension of the diamond along the Vds axis (see label). (e) Extracted Eg as a function of |D/ε0|. The experimental data are in good agreement with
theory calculated according to ref 31 using εBLG = 1 (blue line) including an offset of 5 meV (gray dashed line). Note that for the same
displacement field, the achieved band gap is almost 20 meV higher compared to state-of-the-art BLG devices with gold top gates (open circles taken
from ref 32).
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shows the resulting map of the BLG resistance R = Vds/Id.
Here, we observe a diagonal feature of increased resistance
with a slope β = 1.22, which gives us directly the relative gate
lever arm β = αbg/αtg, where αbg and αtg denote the gate lever-
arms of the top and bottom gate and can be extracted from
quantum Hall measurements49−51 (for more information, see
Supporting Information). The increasing width of the region of
maximum resistance with increasing gate voltages is direct
evidence for the formation and tuning of the BLG band gap
with increasing out-of-plane displacement field D (see also
band structure calculations in Figure 1c). The displacement
field in the dual-gated BLG-based vdW heterostructure is given
by D = eαtg[β(Vbg − Vbg

0 ) − (Vtg − Vtg
0 )]/2, and the effective

gate voltage is given by Vg = [β(Vbg − Vbg
0 ) + (Vtg − Vtg

0 )]/(1 +
β), which tunes the electrochemical potential in the band gap
of the BLG, μ ≈ eVg.32 Here, ε0 is the vacuum permittivity, and
the parameters Vtg

0 and Vbg
0 account for the offsets of the charge

neutrality point from Vtg = Vbg = 0.

To study the band gap opening in our devices as a function
of the displacement field D, we perform finite bias spectros-
copy measurements and investigate the differential conduc-
tance dI/dVds as a function of the effective gating potential Vg
and the applied drain-source voltage Vds for different fixed
displacement fields D, see Figure 1d. A distinct diamond-
shaped region of suppressed conductance emerges, which has a
high degree of symmetry and sharp edges and scales well with
the applied displacement field. The outlines of the diamonds
(black dashed lines in Figure 1d) show a slope of ≈2,
highlighting that Vg directly tunes the electrochemical potential
μ within the band gap and indicating that the band gap is as
good as free of any trap states.32 In the Supporting
Information. we show that the slope of the diamond outlines
is indeed constant (≈ 2) for all displacement fields D/ε0 ≳ 0.2
V/nm.

From the extension of the diamonds on the Vds axis, we can
directly extract the size of the band gap Eg,32 which are shown

Figure 2. (a, b) Drain current as a function of Vg for four different displacement fields (see different colors and labels in panel b) near the valence
band edge (panel a) and the conduction band edge (panel b). The gate leakage current is shown as the gray trace exemplarily for D/ε0 = 470 mV/
nm (see also Figure S4). Measurements were taken at Vds = 0.1 mV and T = 0.1 K. (c) Extracted minimal inverse subthreshold slope as a function
of the displacement field for both, the valence (black) and conduction (blue) band edges. The black-filled circles and blue circles correspond to
data directly extracted from the measurements shown in panels a and b (see black dashed lines), respectively. The upward-pointing triangles are
extracted from similar measurements at slightly higher Vds ≈ 0.5 mV. Both measurements result in values around 0.3 mV/dec at the valence band
edge. At the conduction band edge the SSmin values show an increase with increasing D. Downward-pointing triangles denote SS extracted for
negative displacement fields. The gray symbols represent the SS extracted from two devices with a gold top gate at the valence band edge (cross:
first device measured at 50 mK, gray upward-pointing triangles: second device measured at 1.5 K). (d) Calculated band structure for different
onsite potential differences Δ between the BLG layers. Δkx represents the momentum relative to the K and K’ points. Due to trigonal warping
effects,33 the bands show an asymmetric deformation if a band gap is present. With increasing onsite potential difference, the asymmetry of the
deformation increases, indicating a possible origin of the asymmetry in inverse subthreshold slope values.
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in Figure 1e for positive (filled triangles) and negative
displacement fields (empty triangles). They agree reasonably
well with the theoretical prediction assuming an effective
dielectric constant of BLG of εBLG = 1 (blue line, for more
information, see Supporting Information.) except for a small
offset of 5 meV (gray dashed line), which might be due to
some residual disorder or interaction effects. Measurements on
a second graphite top-gated device reveal the same behavior
(see Figure S9).

In Figure 1e we also report the results of measurements
performed on a similar BLG device but with the top gate made
of gold instead of graphite (see ref 32). It is noteworthy that
the extracted band gap for the device with graphite gates is
almost 20 meV higher than that extracted for the device with a
gold top gate for the same displacement fields, highlighting the
importance of clean vdW-interfaces. Furthermore, the
observed extracted band gap Eg persists down to lower
displacement fields D/ε0 ≈ 50 mV/nm compared to devices
with a gold top gate.

The high tuning efficiency of the band gap in graphite dual-
gated BLG combined with the high symmetry of the diamonds
from the bias spectroscopy measurements demonstrates that
BLG heterostructures built entirely from vdW materials,
including top and bottom gates, outperform BLG devices
with non-vdW materials thanks to much cleaner interfaces,
allowing them to achieve unprecedented levels of device
quality.

The finite bias spectroscopy measurements show that the
edges of the diamonds are sharply defined, which promises
excellent switching efficiency of FETs based on dual graphite-
gated BLG when using Vg as the tuning parameter. To extract
the inverse subthreshold slope, we measure the drain current Id
as a function of Vg for fixed D-field and Vds ≈ 0.1 mV at both
band edges, see Figures 2a and 2b. From the linear fits of the
slopes (black dashed lines), we extract the inverse subthreshold
slope SS = (∂(log10(Id)/∂Vg)−1. The resulting values for the
valence and conduction band are plotted in Figure 2c.

At the valence band edge, we extract record low values of SS
≈ 270−500 μV/dec, roughly 1 order of magnitude above the

Boltzmann limit SSBL(0.1 K) = 20 μV/dec. For comparison,
the saturation limit of conventional FETs based on non-vdW
materials at T ≈ 0.1 K is in the order of a few mV/dec.25 We
repeat similar measurements for slightly higher drain-source
voltages Vds ≈ 0.5 mV. The results are also shown in Figure 2c
as upward-pointing triangles. They agree overall with the
values from the measurements at Vds = 0.1 mV, with inverse
subthreshold slopes at the valence band around SS ≈ 250 to
500 μV/dec. The very low SS value indicates that band tailing
is suppressed for devices with only vdW interfaces. This is also
supported by the fact that samples with a gold top gate (i.e., an
interface between a vdW and a bulk material) show
significantly higher SS values for comparable D-fields at the
valence band edge (see the cross and gray upward-pointing
triangles in Figure 2c).

It is remarkable to observe that while the SS extracted at the
valence band edge does not show a significant dependency on
the applied displacement field D, the values extracted at the
conduction band edge show a considerable increase from SS ≈
500 μV/dec up to SS ≈ 2.8 mV/dec with increasing D. This
displacement field-dependent asymmetry of the SS values is
related to the electron−hole asymmetry of the BLG band
structure. In principle, this asymmetry could also be due to a
top-bottom asymmetry of (weak) interface disorder in the
vdW heterostructure, since transport near the band edges is
dominated by orbitals in only one of the two graphene layers.
For example, for a positive D-field, transport at the
conductance (valence) band edge is carried only by the top
(bottom) layer of the BLG.32 Changing the D-field direction
reverses the band-edge to layer assignment. This allows us to
experimentally exclude such a possible nonuniformity of the
interface disorder, as we observe the same asymmetry in the SS
values for the conductance and valence band edge also for
negative D-fields (see downward pointing triangles in Figure
2c), in good agreement with the values for positive D-fields,
thus strongly emphasizing the importance of the asymmetry in
the BLG band structure. In Figure 2d we show the calculated
band structure as a function of the onsite potential difference
between the layers Δ(D), which can be directly tuned with the

Figure 3. (a, b) Drain current as a function of Vg at the valence band edge for different applied drain-source voltages Vds at a fixed displacement
field D/ε0 ≈ 0.24 V/nm. The data shown in panel a were taken in a dilution refrigerator at T = 0.1 K, while those presented in panel b were taken in
a pumped 4He cryostat at T = 1.5 K. The first setup limits the on-current to roughly 10−8 A. The second system allows higher on-currents of 1 μA.
However, we observe a higher noise level resulting in a slightly increased off-current.
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applied displacement field D (for more information on the
calculations, see Supporting Information). With increasing
Δ(D), the bands undergo an increasingly asymmetric
deformation due to the trigonal-warping effect.33,52 As a
consequence, the bands change from a hyperbolic shape at low
Δ(D) to an asymmetric Mexican-hat shape for high Δ(D),31

see Figure 2d. With increasing band deformation, parts of the
bands close to the K and K′ points of the Brillouin zone
become flat. Recent studies have shown that these flat bands
give rise to a rich phase diagram in BLG, where magnetic and
superconducting phases emerge.43−45 The emerging phases
could act phenomenologically similar to the interface-induced
disorder, resulting in effective tail states at the band edges and
degradation of the SS. The flat parts of the bands are right at
the conduction band edge, but slightly deeper in the valence
band: for example, for Δ = 100 meV in Figure 2d, the local
valence band maximum is much more pronounced than the
local conduction band minimum (see gray shaded areas).
Consequently, the resulting phase diagrams also exhibit an
asymmetry similar to our SS values,45 which suggests that the
asymmetric band deformation could cause the SS asymmetry
in our measurements. We observed the same behavior for a
second device, although at slightly different D-fields (see
Figure S10), most likely due to sample-to-sample variations.
Regardless, we would like to emphasize that this consistent
asymmetry is in itself an indicator of the overall low disorder in
our devices.

While our device presents excellent SS values, the measured
on−off ratio in Figure 2a and b is only about 104 to 105, which
is a direct consequence of the low on-current of about Id ≈
10−8 A. This low current level is partially due to the small size
of the device contacts, which are circularly etched vias through
the hBN, with a diameter of just 1 μm. However, it is mainly
because the measured current is limited by our measurement
setup, which is optimized for low-noise, small-current
measurements but also imposes a sharp limit of about 10−8

A, see Figure 3a. In a different setup at higher temperatures T
= 1.5 K, we observe on-currents of up to 1 μA in the very same
device for large Vds = 30 mV, see Figure 3b, indicating that
higher currents are possible also with the contact geometry
used. This is also confirmed by measurements in a second
device of similar design, where we measure currents up to 1 μA
even at T = 0.1 K in a different low-temperature setup (see
Figure S11).

The measurements presented in Figure 3 also show that the
threshold voltage shifts to lower values of Vg with increasing
Vds, without significantly affecting SS, see Figure 3a (more data
are provided in Sec. 3 in the Supporting Information). This
implies that−despite the small on-current−the device
presented in this manuscript could be operated at T = 0.1 K
as a FET with an on−off ratio of at least 105 and an operational
voltage range of only 3−4 mV by suitably choosing the drain-
source voltage Vds, thanks to the small SS ≈ 250 μV/dec At T
= 1.5 K, reaching an on−off ratio of 105 will require
operational voltages of 6−7 mV due to a slightly higher
noise level and slightly higher SS ≈ 500 μV/dec.

Finally, we summarize in Figure 4 the minimum inverse SS
for different transistor device architectures reported in the
literature (empty dots) as a function of temperature for low T
≤ 6 K. The best performing conventional FET devices, based
on silicon-on-insulator18 or nanowires,53 allow to reach SS ≈ 2
mV/dec. These values are almost an order of magnitude higher
than the 250 μV/dec of the BLG-based devices reported in this

work (red dots). The theoretical Boltzmann limit is included as
a solid line. At T = 1.5 K, the Boltzmann limit is SSBL ≈ 300
μV/dec, only slightly less than the inverse subthreshold slope
of our device (SS ≈ 500 μV/dec). We attribute this
improvement in SS directly to the reduced interface disorder
in devices based on pure vdW heterostructures, i.e., without
bulk interfaces to metal or oxides. The detrimental effect of
bulk interfaces is well illustrated by the much higher SS values
of BLG devices, where the top gate was made of gold instead
of graphite (blue triangles in Figure 4). A BLG device with an
additional Al2O3 between the metal top gate and the top hBN
performed even worse (green triangle).

In summary, we have demonstrated that BLG devices based
on pure vdW materials exhibit excellent band gap tunability
and have provided evidence that 2D material-based FETs offer
superior device behavior at cryogenic temperatures, with SS in
the order of 250 μV/dec, only 1 order of magnitude above the
Boltzmann limit of SSBL ≈ 20 μV/dec at T = 0.1 K. The ability
to also electrostatically confine carriers in BLG38,40,42 and the
excellent performance as a field-effect transistor make this type
of device an ideal platform for cryogenic applications and calls
for further device design improvements that allow for down-
scaling and circuit integration. Moreover, we expect this work
to trigger the exploration of pure vdW heterostructure FETs
based on true 2D semiconductors, such as the transition metal
dichalcogenides MoS2 and WSe2.
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Figure 4. Comparison of the extracted low-temperature SS values for
different types of FET devices. The red dots correspond to the device
presented in this paper. The blue triangles refer to a similar device but
where the top gate was made of gold instead of graphite, and the
green triangle refers to a third BLG device with an additional Al2O3
layer between the hBN and the gold gate. The empty symboles
correspond to SS values reported in the literature for FETs based on
different technologies (silicon on insulator (SOI), bulk CMOS, Fin,
and nanowire FETs13,18,23,25,30,53−61). FETs based on vdW hetero-
structures outperform all other technologies in terms of SS at
cryogenic temperatures. The solid black line is the theoretical
Boltzmann limit SSBL = kBT/e ln(10).
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Equations used to calculate the band gap and band
structure in bilayer graphene as a function of the
displacement field, additional information for the first
sample, comparable data for a second device, and the
drain-current traces for the BLG devices with Au top
gate and additional Al2O3 dielectric (PDF)

■ AUTHOR INFORMATION
Corresponding Author

Christoph Stampfer − JARA-FIT and 2nd Institute of Physics,
RWTH Aachen University, 52074 Aachen, Germany; Peter
Grünberg Institute (PGI-9), Forschungszentrum Jülich,
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