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A B S T R A C T

Predicting runoff coefficient (Rc), as an indicator of the catchment’s response to the rainfall-runoff process,
remains a persistent challenge using different modelling techniques, especially in catchments with strong human
manipulation. This study investigates the efficiency of the Long Short-Term Memory (LSTM) method in pre-
dicting Rc for the Rur catchment, in Germany. The period from 1961 to 2021 is considered, which is subject to
human intervention and significant urbanization especially in the northern part of the catchment. An LSTM
structure is defined by employing inputs at a monthly resolution including temperature, precipitation, soil water
storage, and total evaporation with a look-back window of 1 to 6 months to model noisy Rc data of the study
area. Two approaches using either undecomposed or decomposed Rc were employed in conjunction with the
LSTM method, to mitigate the impact of noise associated with Rc. The results show that in the case of unde-
composed Rc, the best performance of the LSTM structure was obtained with a 4-month look-back window,
yielding Nash-Sutcliffe efficiency (NSE) of 0.55, 0.46, and 0.15 for training, validation, and test sets, respectively.
These results highlight inadequate accuracy in accounting for the presence of noise in Rc. Therefore, in the
second novel approach, we used maximal overlap discrete wavelet transform (MODWT) to decompose the Rc up
to level 3 to reduce the complexity and distribute the noise effects across each level. The new approach showed
high accuracy in modelling noisy data of Rc with NSE values of 0.97, 0.95, and 0.90 for training, validation, and
test sets, respectively. The obtained results underscore the pivotal role of decomposition techniques in
conjunction with LSTM to account for the presence of noise, especially in catchments with strong human
manipulation.

1. Introduction

The runoff coefficient (Rc) was initially formulated by Sherman
(1932) in the early twentieth century. It represents the ratio of runoff to
rainfall (Bedient et al., 2008; Burak et al., 2021) and is extensively
employed in engineering practices (Chen et al., 2020). In hydrology, Rc
serves as a diagnostic variable, playing a key role in describing runoff
generation within a catchment (Merz et al., 2006), and which is well-
known to be influenced at different scales by the ongoing global
warming (Blöschl et al., 2019; Masseroni et al., 2021; Dari et al., 2023).
Understanding the impact of climatic and human-induced changes on
local hydrological processes is essential, emphasizing the significance of

assessing Rc changes in river basins (Velpuri and Senay, 2013). The Rc
displays substantial variability in both space and time due to various
influencing factors (Norbiato et al., 2009; Merz and Blöschl, 2009;
Penna et al., 2011). For example, Chen et al. (2020) highlighted the
crucial influence of groundwater levels on the temporal variability of the
Rc. Merz and Blöschl (2009) studied the variation of Rc across a broad
range of Austrian basins and found that Rc are mainly influenced by
climate indicators like mean annual precipitation and the long-term
ratio of actual evaporation to precipitation, with minimal impact from
land use, soil types, and geology in the studied catchments. Similarly,
Massari et al. (2023) investigated how basin pre-storm conditions in-
fluence the Rc across 284 European basins and 60,620 flood events.
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Strong correlations of Rc were observed with deep soil storages, pre-
storm discharge, and snow water equivalent among different basins.
Their findings emphasized accurate flood forecasting relies on under-
standing how pre-flood conditions relate to the Rc, to establish links for
early-warning systems. Rahi et al. (2023) used continuous wavelet
coherence analysis (WCA) to investigate the impact of hydroclimatic
variables, including temperature (T), precipitation (P), soil water stor-
age (SWS), and Land Use Land Cover (LULC) changes, on the Rc. Their
findings revealed that precipitation correlation with Rc remained
moderately unstable. In contrast, weak correlations were observed with
LULC changes, while a strong positive but lagged correlation with SWS
(1 month) and a strong lagged (3–6 months) but negative correlation
with T suggested the prevailing significance of hydroclimatic factors
over LULC changes.

The evolving challenges in complex hydrological issues like real-time
flood and drought forecasting, as well as water resource management,
underscore the need for precise modelling of the regional-scale rainfall-
runoff process. Despite numerous proposed approaches and the devel-
opment of various models over the past decades, a comprehensive so-
lution remains hard to attain. This challenge is driven by the substantial
temporal and spatial variability inherent in the rainfall-runoff system
(Merz and Blöschl, 2009) and the limitations in the availability of suit-
able mathematical tools to fully capture the dynamics underlying this
process. Artificial Intelligence (AI) techniques are widely used in hy-
drology due to their flexibility, transferability, and computational effi-
ciency (Wu et al., 2009; Nourani et al., 2011; Shoaib et al., 2014).
However, the limitation of more classical AI-based techniques such as
Artificial neural networks (ANNs) lies in the absence of temporal in-
formation on model inputs, affecting their ability to capture the tem-
poral reaction of runoff to meteorological data (Kratzert et al., 2018).
Hydrological hysteresis, a time-dependent phenomenon (Gharari and
Razavi, 2018), complicates rainfall-runoff simulations by retaining the
historical impacts on present or future occurrences. With the evolution
of computational hardware capabilities and algorithms during the past
decades, particularly long short-term memory (LSTM) as a class of
recurrent neural networks (RNN) has become prominent. The LSTM
outperforms the traditional models in simulating runoff, specifically in
addressing time series data challenges in hydrology (Kratzert et al.,
2018; Bergen et al., 2019; Mao et al., 2021). The LSTM model has
exhibited considerable potential in addressing temporal issues by
memorizing sequence, accounting for prolonged temporal relationships
and multiple output variables (Xiang et al., 2020). LSTM’s key advan-
tage lies in its capacity to capture and learn long-term dependencies
between the input and output data within the network (Kratzert et al.,
2018). Systems that show the presence of hysteresis or of which the
evolution depends on past states are typically denoted as “path-depen-
dent systems” or “systems with memory” (Hassani et al., 2014). How-
ever, hydrological hysteresis has not been extensively studied in the
context of water circulation (Gharari and Razavi, 2018), some studies
indicated that there might be a lagged response of runoff to meteoro-
logical variables, which can extend beyond 100 days (Chen and Kumar,
2002; Orth and Seneviratne, 2013). In this regard, a range of studies has
explored the use of LSTM models in capturing temporal relationships in
wind power and flow stream estimation using static look-back windows
(Wang et al., 2020; Girihagama et al., 2022), while Li et al. (2021)
introduced dynamic time-delays to improve the prediction performance
of industrial time series models.

Standard RNNs face long-term dependence issues, such as gradient
vanishing or exploding (Hochreiter and Schmidhuber, 1997). Despite
efforts with variants like LSTM, gated recurrent unit (GRU), bidirec-
tional LSTM (BiLSTM), and bidirectional GRU (BiGRU), these models
may struggle with highly nonlinear and noisy time series without proper
preprocessing (Zhou et al., 2024). Nhita et al. (2016) proposed to use the
moving average as an effective data smoothing method, enhancing the
modelling and forecasting capabilities when using neural networks.
Another approach to attenuate noise involves decomposing the problem

into smaller subproblems, reducing complexity, and distributing the
noise effects across each subproblem for more effective mitigation (Sáez
et al., 2014). Recent advances in hybrid machine learning models
(MLMs) have utilized various time series decomposition techniques to
improve the MLM performance, including discrete wavelet transform
(DWT) (Mallat, 1989; Liu et al., 2014), maximal overlap DWT (MODWT)
(Adamowski and Sun, 2010), wavelet packet transform (WPT) (Moosavi,
et al., 2017), empirical mode decomposition (EMD) (Huang et al., 1996,
Napolitano et al., 2011), and ensemble EMD (EEMD) (Wang et al., 2015)
and variational mode decomposition (VMD) (Dragomiretskiy and Zosso,
2014). These methods decompose complex time series data into simpler
sub-series for separate modelling, effectively capturing valuable infor-
mation at different temporal scales (Gokhale and Khanduja, 2010). In
addition, Adamowski and Sun (2010) showed that combining an ANN
with DWT improved the prediction of daily streamflow. Furthermore,
Seo et al. (2017) proposed VMD-based extreme learning machine (VMD-
ELM) and VMD-based least squares support vector regression (VMD-
LSSVR) models, which demonstrated higher accuracy for daily rainfall-
runoff modelling compared to single and DWT-based MLMs. Finally,
Guo et al. (2023) found that hybrid models combining two-stage
decomposition methods with LSTM, specifically WT with CEEMDAN,
VMD, and LMD, outperformed traditional and standalone models in
forecasting daily runoff over the Pearl River in China.

The MODWT decomposes a signal in both time and frequency do-
mains, similar to the DWT. However, unlike the DWT, the MODWT re-
tains down-sampled values at each decomposition level and can be
applied to signals of any length without the power-of-two restriction.
According to Cornish et al. (2006), the MODWT offers several advan-
tages over the DWT. These advantages suggest that combining MODWT
with soft computing models could be a more effective and efficient
approach for river stage modelling (Seo et al., 2017).

Despite extensive studies on Rc and its influencing factors, there
remains a gap in modelling Rc at regional and global scales. This paper
addresses this gap by utilizing LSTM to predict Rc, incorporating the
decomposition method. The first configuration of undecomposed Rc has
been considered to investigate the capability of the LSTM method in
modelling noisy Rc. The second configuration is defined to mitigate
noise effects in Rc modelling, using the MODWT method to decompose
Rc into sub-components, thereby reducing noise impact and improving
model accuracy.

2. Study area

The analysis has been carried out using data from the Stah outlet of
the Rur catchments, in Germany (see Fig. 1). It covers an area of 2,245
km2 predominantly situated in the North Rhine-Westphalia region and is
part of the TERENO (TERrestrial ENvironmental Observatories) network
in Germany (Zacharias et al., 2024). Small portions of the basin extend
into Belgium (6.7 %, 157 km2) and the Netherlands (4.6 %, 108 km2) as
well. The terrain elevation gradually decreases from south to north,
ranging from 680 to 30 m above sea level. The annual precipitation
ranges from 650 to 1200 mm/yr increasing from north to south of the
catchment (Bogena et al., 2005a). Fig. 1b provides land cover features at
100 m resolution derived by the Corine Land Cover data set referring to
the year 2018 (CLC 2018). Agricultural areas cover 49 % of the catch-
ment, mainly concentrated in the lowland regions of the northern part,
while urban areas cover approximately 17.7 % of the area, primarily
concentrated in the same northern region. Natural areas are predomi-
nantly situated in the elevated regions of the catchment, accounting for
31.8 % of the entire Rur catchment area. Water bodies and peat bogs
represent less than 1.5 % of the total area (Fig. 1b). The upland region
(southern part), characterized by low permeable rock strata and limited
groundwater recharge, relies on reservoirs for managing water re-
sources. The upper Rur catchment exhibits pronounced seasonality,
displaying a fast runoff response following rainfall events (Rudi et al.,
2010). In contrast, water management strongly regulates runoff in the

A. Rahi et al. Journal of Hydrology 641 (2024) 131815 

2 



lower Rur catchment (Bogena et al., 2005a). The flatland region from
the centre to the north, containing loose rock aquifers, features rela-
tively high groundwater recharge rates (Bogena et al., 2005b), which are
subject to intensive groundwater withdrawal. The Rur is a typical low
mountain river with a very unbalanced discharge behaviour (the ratio of
discharge values can fluctuate between 1:1000 and 1:2000 in extreme
cases of dry weather and flood discharge). To compensate for these
strong fluctuations, as well as for drinking water and energy production,
a networked water reservoir system with several dams was established
in the first part of the 20th century in the upper reaches, with a
maximum reservoir volume of around 300 million cubic meters.

3. Materials and methods

3.1. Data

In this investigation, monthly runoff volumes recorded at the Stah
outlet during the period 1961–2021 were used. The runoff height was
subsequently computed by dividing the volume by the basin’s area. For
the timeframe 1961–2021, historical P data were downloaded by the
climatic data center service (CDC, https://opendata.dwd.de/climate_en
vironment/CDC/), and information was gathered from 10 meteorolog-
ical stations within the study area (see Fig. 1a). Cumulative monthly
values of P recorded by each rain gauge were collected for all considered

Fig. 1. Study area map. Panel a) provides an overview of the Rur catchment (the ESRI Shaded Relief layer is used as a background map), the monitoring network,
and the basin location with respect to Germany, and panel b) shows land cover features derived from the Corine Land Cover data set referring to the year 2018 (CLC
2018). Ur., Agr., and Nat. refer to urban, agricultural, and natural areas, respectively.
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years, and the Thiessen polygons method was applied to derive basin-
averaged monthly P data. Then, Rc for the entire catchment was
calculated as the ratio between runoff height and basin-averaged P.

The average monthly T data at 2 m elevation, the cumulative
monthly data of total evaporation (ET), and the average monthly data of
volumetric soil water content (SWC) from 1961 to 2021 were acquired
from the Copernicus ERA5-Land (European Reanalysis v5-Land) service
(Muñoz-Sabater et al., 2021) with a spatial sampling of 9 km. To
quantify SWS, the initial 4 layers of the product’s physical schematiza-
tion were considered, encompassing a depth of up to 2.89 m, SWS rep-
resents the total amount of water that is stored in the soil profile. All the
data were spatially averaged over the Rur basin prior to the analyses
(Table 1).

Overall, the choice to use in-situ rainfall data ensures that we
leverage the high-resolution, long-term observational data available in
the region, thus enhancing the reliability of our LSTM forecasts. This
approach aligns with our study’s focus on combining LSTM modelling
and wavelet decomposition to improve forecast accuracy in an
anthropized basin covering 2,245 km2.

The primary focus of this study was to develop a technique to
overcome the effects of noise while forecasting Rc. The proposed tech-
nique can be potentially implemented elsewhere, upon availability of
adequate records to fit the train set. For larger scale Rc forecasts,
combining AI-based model with wavelet technique using satellite data
can even be applied, though this is beyond the scope of our current
research.

3.2. LSTM modelling

LSTM, a specialized form of RNN, overcomes the limitations of
traditional ANNs in managing long-term dependencies through the
integration of memory structures (Hochreiter and Schmidhuber, 1997).
In this study, an LSTM structure has been defined to develop a hydro-
logical model for predicting Rc.

3.2.1. LSTM design
The basic model includes a cell state C for each time step, preserving

crucial information for short- and long-term memory. Each cell receives
the previous state of the target variable ht− 1 and one or more predictor
variables x as input and returns the current state of the target variable ht
as the output. Fig. 2a illustrates the core structure and algorithms of a
modern LSTMmodel, updating six parameters in each time step through
equations (1) to (6):

ft = σ
(
Wf .[ht− 1, xt ] + bf

)
(1)

it = σ(Wi.[ht− 1, xt ] + bi) (2)

c̃t = tanh(WC.[ht− 1, xt ] + bC) (3)

Ct = ft × Ct− 1 + it × c̃t (4)

ot = σ(Wo.[ht− 1, xt ] + bo) (5)

ht = ot × tanh(Ct) (6)

The first parameter, ft , is associated with the forget gate, determining
the extent to which the previous cell state should be disregarded. This
decision is made by a sigmoid function with a linear calculation
involving the current input xt and the previous state ht− 1. The weights
(W) and biases (b) in each LSTM cell vary in different steps for the linear
equations. A lower ft value (close to zero) prompts the sigmoid function
to forget the previous cell state Ct− 1 more. The second parameter, it, is
linked to the input gate, deciding what new information is to be retained
and added to the cell state. Calculated by a sigmoid function with a
linear relation on xt and ht− 1, it influences the candidate values c̃t for the
new cell state, determined by a hyperbolic tangent (tanh) function.
Subsequently, the cell state Ct is updated. Finally, the output parameter
ot is computed by a sigmoid function with a linear relation on xt and ht− 1.
The output result at the current state, ht, is the product of ot and the tanh
function value of the cell state Ct. In summary, ft, it, c̃t, Ct, ot, and ht are
all vectors. Specifically, ft and it range between 0 and 1, c̃t ranges be-
tween − 1 and 1, Ct can take any real value, ot ranges between 0 and 1,
and ht ranges between − 1 and 1. All these vectors allow the LSTM
network to handle multiple units of data simultaneously, which en-
hances its ability to learn and model complex temporal patterns.

In this study, we set our predictor variable x to contain states of T, P,
SWS, and ET as Chen and Xu (2021) demonstrate that the inclusion of
more meteorological variables can improve LSTM performance. To
frame our model, we employed the pre-existing LSTM layer components
within the Keras (Chollet, 2021) framework in Python. In principle, each
cell of the LSTM model only takes into account the previous state of the
target variable, but not the previous states of the predictors. Therefore,
any possible lagged relationship between the predictors and the
outcome variable must be considered. In this regard, a new predictor
variable is usually obtained from the original predictor variable, using a
specific look-back window. In our analysis, we examined different look-
back windows with values ranging from 1 to 6 months to obtain the best
look-back window according to the trial-and-error concept.

Shukla et al., (2023) compared the runoff simulations and observed
data for the calibration period (2000–2010) and the validation period
(2011–2015) at the stations Monschau, Linnich, and Stah in the Rur
catchment. They found the model performed best at Monschau, likely
due to fewer anthropogenic interventions compared to the more ur-
banized and agricultural northern parts of the basin, where water use,
channel diversions, and dams, which are not considered in the model,
significantly affect stream flow.

Considering the regulated runoff due to dam construction and water
treatment in the northern part of the Rur catchment, the stochastic na-
ture of rainfall data may lead to high variance and noisy Rc signals,
complicating modelling efforts. Consequently, the Rc estimated in this
work is influenced by those above-mentioned human activities. How-
ever, studies (e.g., Shukla et al., 2023) indicate that the Rur river’s
discharge dynamics remain relatively natural, as less than 5 % of runoff
is used for drinking water and efforts are made to maintain natural
discharge conditions to protect the ecosystem. Therefore, the Rc values
from this study should still approximate natural conditions, though
precise quantification of the dam-regulating effect is beyond this study’s
scope. To overcome the noise effects, we implemented two configura-
tions: 1) we modelled the noisy signals of Rc without any preprocessing
and 2) we first decomposed Rc signals usingMODWT into low-frequency
(A) and high-frequency (D) components (see Table 2) and then modelled
each component separately and combined them at output level to
reconstruct the original signal of Rc (see Fig. 2c):

Rc =

(
∑m

i=1
Di

)

+Am (7)

where m is the level of decomposition.

Table 1
Data sets used in this study and their main features.

Data Temporal resolution Spatial sampling Data source

P Monthly, 1961–2021 Point-wise CDC
Runoff Monthly, 1961–2021 Point-wise TERENO-NRW
SWC Monthly, 1961–2021 9 km ERA5-Land services
T Monthly, 1961–2021 9 km ERA5-Land services
ET Monthly, 1961–2021 9 km ERA5-Land services

CDC (Climate data centre): https://opendata.dwd.de/climate_environmen
t/CDC/.
TERENO-NRW (Nord Rhein Westfalen): https://www.tereno.net/.
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3.2.2. Model setting and parametrization
In the model architecture, two LSTM layers are employed: the first

layer consists of 512 neurons with a rectified linear unit (ReLU) acti-
vation function and is configured to return sequences. The subsequent
LSTM layer contains 256 neurons, also utilizing the ReLU activation
function. Following the LSTM layers, a dense layer, with an activation
function of ReLU, is added with a number of neurons equal to the target
output’s shape. An epoch represents one complete pass through the
entire training dataset, allowing the model to update its parameters to
improve performance. To prevent overfitting, an early stopping indica-
tor is implemented with a patience of 20 epochs, restoring the best
weights based on monitoring the validation loss. The optimization
process utilizes stochastic objective functions, based on adaptive esti-
mates (Adam) developed by Kingma and Ba (2015), a gradient descent-
based algorithm, with an initial learning rate set to 0.0001, and it is
adjusted by a factor of 0.001 when the loss on the validation set fails to
decrease, thereby mitigating overfitting.

3.2.3. Evaluation metrics
The model aims to minimise the fraction of unexplained variance,

employing mean squared error (MSE) as the loss function. The choice of

MSE aligns with the Nash-Sutcliffe efficiency (NSE), a widely-used
performance evaluation method in hydrological modelling. NSE
ranges from − ∞ to 1, and the closer its value is to 1, the better the model
performs (Arnold et al., 2012):

MSE =

∑n
i=1(Yi − Ŷi)

2

n
(8)

NSE = 1 −
∑n

i=1(Yi − Ŷi)
2

∑n
i=1(Yi − Y )

2 (9)

Where Yi is the observation at the time i, Ŷi is the model result at time
i, Y is the mean of all observations, and n is the total number of obser-
vations. In alignment with Moriasi et al. (2015), this study utilizes NSE
to categorize results into unsatisfactory (NSE ≤ 0.5), satisfactory (0.5 <

NSE ≤ 0.7), good (0.7 < NSE ≤ 0.8), and very good (NSE > 0.8),
providing a concise evaluation of model accuracy and reliability.

Root mean square error (RMSE) serves as an indicator of the standard
deviation of the prediction error in a model. A smaller RMSE value in-
dicates a smaller prediction error, signifying better performance of the
model (Naabil et al., 2017). RMSE represents the errors between pre-
dicted values and actual values and is calculated as:

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(Yi − Ŷi)

2
√

(10)

In the current study to verify the hydrological modelling of Rc, two
metrics, NSE and RMSE, were used to evaluate the differences between
Rc simulated in the train set (1961–2001), validation set (2001–2011)
and test set (2011–2021) with observed Rc.

Fig. 2. LSTM structure: a) basic layer configuration from time step t− 1 to t + 1, with detailed calculations illustrated in the LSTM cell at time step t, b) schematic of
decomposing Rc using MODWT c) LSTM modelling through Rc’s wavelet decomposition tree.

Table 2
Decomposition components and corresponding frequencies.

Components Frequencies (cycles/month) Relative energy (%)

D1 0.25–0.5 6.62
D2 0.113–0.277 3.2
D3 0.0561–0.136 4.07
A3 0–0.061 86.11

A. Rahi et al. Journal of Hydrology 641 (2024) 131815 

5 



3.2.4. Model optimization
The optimization of the LSTM model parameters was carried out

differently for the main parameters and hyperparameters. The look-back
window parameter, was tuned by testing and iteration to achieve the
optimum output, while the hyperparameters are predefined settings that
control the learning process (see Table 3) were optimised by Grid Search
Cross-Validation (GridSearchCV), a Hyper-Parameters Optimization
(HPO) technique used in machine learning (Goel et al., 2020; Bischl
et al., 2023). Grid search is a systematic approach to parameter tuning in
machine learning models, evaluating each combination of algorithm
parameters specified in a grid. In this process, the key terms include the
estimator, implementing the scikit-learn estimator interface, and rep-
resenting the classifier to be trained. The parameter grid is a Python
dictionary with parameter names and corresponding settings, testing all
combinations to identify the optimal accuracy. Cross-validation is
crucial in this context, determining the resampling strategy for evalu-
ating models and mitigating bias. It involves randomly shuffling and
splitting the dataset into k groups, using each as a test set while the
others act as training data. This process provides more reliable results
compared to a simple train-test split, as it ensures that each sample is
present in the testing data once and used for training k-1 times (Ranjan
et al., 2019).

In this study, several key hyperparameters (see Table 3) have been
optimized to achieve the best possible performance of our model. The
remaining hyperparameters, which have been set to default or pre-
determined values based on empirical best practices, include the
learning rate and early stopping (see section 3.2.2). This approach en-
sures a balanced between computational efficiency and model accuracy,
allowing us to focus on the most impactful hyperparameters for our
specific application.

3.3. Model configurations

As previously explained, two different configurations have been
defined to implement and compare the results of the proposed LSTM
modelling approach: 1) Undecomposed Rc and 2) Decomposed Rc.

3.3.1. Undecomposed Rc
In this approach, the undecomposed Rc has been modelled by the

LSTM method considering a look-back window, which was set on the
basis of the concept of “lag” derived by the WCA, a theory recently
applied to hydrological studies (Rahmati et al., 2020; Rahi et al., 2023;
Dari et al., 2024). Fan et al. (2020), found that an improper window size
can significantly impact model performance. Referring to Appendix A,
we assessed the phase shift and lag between the benchmark signal (Rc)
and P, SWS, T, and ET time series following Rahmati et al. (2020), then
different look-back windows evaluated by LSTM to find the optimum
value.

3.3.2. Decomposed Rc
In the second approach, the MODWT was used to decompose Rc

using the Coif mother wavelet into its approximation (A) and details (D),
depending on the decomposition level. The MODWT analyses signals

into progressively finer octave bands. This multiresolution analysis en-
ables to detect patterns that are not visible in the raw data. The level for
MODWT computation (decomposition level) is indicated as a positive
integer, not exceeding the floor of the log2N, where N represents the size
of the input layer in the time dimension. In this study, with a time
dimension of 720 months (starts from January 1961 to December 2020),
the maximum level is set to 9. However, Srivastava et al. (2016) argue
that the level of decomposition can be recognized by visual inspection
where the approximation coefficient and detail have visual similarity.
Therefore in accordance to Srivastava et al. (2016) plus inspection of the
accuracy of the developed models, we decided to decompose Rc up to 3
levels. The MODWT partitions the energy of the signal across the various
scales and scaling coefficients. The relative energy is defined as the
proportion of energy in each component by level, relative to the total
energy of decomposition level. The sum of relative energies in all
components equals 1 (see Table 2).

Then, the decomposed signals (one approximation and three details)
were modelled separately applying the LSTM method with the same
look-back window setting as defined in previous section. Finally, the
modelled decomposed signals were combined with each other to
reconstruct the Rc signal. By comparing the reconstructed and unde-
composed Rc signals, we were able to evaluate the accuracy of the model
at the output level, in addition to checking the accuracy of each indi-
vidual model for each component.

4. Results and discussion

The outcomes of this study reveal commendable stability in the
monthly resolution performance of the LSTM model, showcasing its
ability to reproduce the complex features of the Rc. Based on the WCA
results (Appendix A), a temporal lag of 1–6 months between Rc and the
key input variables (i.e., P, SWS, T, and ET) has been identified. The
temporal lag deduced by the WCA has been considered as a look-back
window. After several trials considering entities of the look-back win-
dow within the range of 1–6 months, the optimal LSTM model perfor-
mances have been found when employing a look-back window equal to
4 months. Such a value is a good trade-off between capturing relevant
temporal dependencies and preventing overfitting (Fig. 4).

In this study, GridSearchCV was employed to optimize hyper-
parameters (Listed in Table 3). The findings revealed that the most ac-
curate results in forecasting both decomposed Rc and undecomposed Rc
can be obtained by applying the optimized parameters as presented in
Table 4. In the following subsections, we will report the results obtained
for each configuration.

4.1. Undecomposed Rc

In Fig. 3a results of training and validation loss (look-back window
equal to 3 months) show that the model fails to predict undecomposed
Rc accurately, and the result contains uncertainty and needs to be
improved. The NSE for both the train and validation sets is equal to 0.51
and 0.49 respectively, indicating unsatisfactory match with observed Rc
from 1961 to 2001 (Fig. 3b). However, a noteworthy challenge arises in
the test set, where the NSE drops to 0.05, indicating diminished accuracy
and underscoring the imperative need for a targeted solution. Holman-Table 3

Input hyper-parameters entered into the GridSearchCV method.

Hyper-parameters Value

batch size 4, 8, 16, 32, 64
number of layers 2, 3, 4, 5
LSTM units 256, 512, 1024
Epoch 50, 100, 200
optimizers ‘sGD’, ‘Adam’, ‘RMSprop’
activations ‘tanh’, ‘relu’, ‘sigmoid’

Batch size = the number of instances in each training batch.
Stochastic gradient descent (SGD).
Root mean squared propagation (RMSprop).

Table 4
Optimal values of hyperparameters − returned by the
GridSearchCV method.

Hyper-parameters value

batch size 4
number of layers 2
LSTM units 512
Epoch 200
optimizer ‘Adam’
activations ‘relu’
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Dodds et al., (1999) found that the temporal sampling of precipitation
can affect model calibration, where lower sampling frequencies may
result in the underestimation of runoff. This is probably due to missing
the possible lagged responses between precipitation and runoff, which
probably is the case in our analysis, too. Therefore, we modelled the
undecomposed Rc by the LSTM method applying a look-back window

equal to 4 months. The results showed that the NSE of the train and
validation set remained constant, while NSE of test set enhanced to the
value of 0.15 (Fig. 3d). Although using the look-back window equal to 4
improved the results, the results were still very poor. Patry et al. (1989)
and Gusev et al. (2017) both highlight the role of uncertainty in hy-
drological models, particularly in the presence of noise. Onstad and

Fig. 3. Results of fitting Rc by LSTM model using look-back window equal to 4 months a) Loss value, b) RMSE and NSE. Months since January 1961.

Fig. 4. Decomposed Rc at level 3 by MODWT (Coif1 mother wavelet); a) Original Rc, b) Approximation at level 3 (A3), c) Detail at level 3 (D3), d) Detail at level 2
(D2), e) Details at level 1 (D1); Red, blue and green mark plots refer to original Rc, approximation and details plots respectively. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
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Jamieson (1970) further emphasize the importance of considering land
use modifications in runoff modelling, which can be affected by noise.
Gelfan et al. (2015) extend this discussion to the analysis of hydrological
extreme uncertainty, which is also influenced by noise. Therefore, upon
a detailed examination of the Rc time series, the primary source of
discrepancy was traced back to inherent noise associated with precipi-
tation and runoff data. These noise elements introduced a level of
unpredictability in the Rc values, leading to suboptimal model fitting
during the training phase and subsequently reduced accuracy in
forecasting.

4.2. Decomposed Rc

The obtained results for this approach show that the detail compo-
nent D1 contain varying amounts of noise (panels (e) of Fig. 4), whereas
the noise (low frequency) from components D2, D3and A3 is extremely
minimal and indistinguishable (see panels b-d of Fig. 4).

In panel (a) of Fig. 5, the training and validation loss profiles for the
first level of decomposed Rc are depicted, which correspond to the
highest frequency (0.25–0.5) component in the signal. The presence of
high-frequency noises in runoff and precipitation can lead to overfitting
in hydrological models. The overfitting of training data compromises the
model’s suitability to be generalized, rendering its performance unreli-
able when applied to newmeasurements (Piotrowski and Napiorkowski,
2013). The result of this study indicates that the training set has been
effectively simulated; however, the validation set exhibits signs of
overfitting which is attributable to the presence of high-frequency noises
in the D1. Examining panel (c) of Fig. 5 reveals NSE values for the train,
validation, and test sets equal to 0.92, 0.81, and 0.71, respectively.
Furthermore, RMSE values for the train, validation, and test sets are
observed as 0.03, 0.03, and 0.05, respectively. Despite the expected
presence of high-frequency noises in the D1, the LSTM model demon-
strates a well-fitted behaviour, yielding significant simulation results
across train, validation, and test data sets. Upon inspecting Fig. 5b, it
becomes apparent that the fitting for component D2 surpasses the D1.

Notwithstanding this improvement, the overfitting of the validation set
persists, albeit with noticeable advancements. The LSTM model’s
enhanced fitting component D2 is reflected in the improved NSE values
for the train, validation, and test sets, showing as 0.97, 0.80, and 0.81,
respectively. This enhancement in the efficacy metrics underscores the
model’s proficiency in capturing underlying patterns within the data.
Concurrently, the RMSE values for the train, validation, and test sets are
equal to 0.01, 0.02, and 0.03, respectively. Hence, the model has
effectively mitigated the impact of high-frequency noises associated
with D1 and D2, showcasing acceptable performance in simulating Rc
dynamics across the train, validation, and test datasets.

In Fig. 6a, a notable improvement in modelling accuracy is evident
for D3. The NSE values, reaching 0.99, 0.99, and 0.96 for the train,
validation, and test sets respectively, underscore the robust performance
of the model. Such high NSE values indicate the model’s ability to
accurately capture the complexity of the data across train, validation,
and test datasets. Furthermore, RMSE values equal to 0.005, 0.008, and
0.001 for the train, validation, and test sets, respectively, are found
(refer to Fig. 6c).

The modelling of the component A3 using LSTM (refer to Fig. 6b and
d) has been implemented with high precision. The training and valida-
tion loss presented in Fig. 6b reflects an outstanding simulation,
resulting in NSE values of 0.99, 0.99, and 0.99 for the train, validation,
and test sets, respectively. This model was expected to exhibit the most
precise fitting among component D3 and A3. This anticipation arises
from the fact that the approximation coefficient filters by a low-pass
frequency, aligning with the characteristics of the mother tongue. The
RMSE for the A3 consistently maintains a low value, reminding the
behaviour of the D3, which exhibits the least uncertainty among all
decomposed details. This stability underscores the robustness of the A3
in capturing underlying patterns with minimal errors, assuring its
crucial role in achieving accurate and stable results within the broader
context of the decomposition analysis.

Inspecting the efficacy values shows that the LSTM could fit the train
set, however, the efficacy does not show satisfactory accuracy value

Fig. 5. Results of fitting Rc details by LSTM model (A look-back window = 4) a) Loss value of D1, b) Loss value of D2, c) RMSE and NSE of D1, d) RMSE and NSE of
D2. Months since January 1961.
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(Fig. 7a). To overcome this challenge, Rc was decomposed to specific
levels of 1 and 3, with particular emphasis on employing the LSTM
model through the decomposed components of each level. Then

reconstructed Rc was obtained from equation (7) for both levels 1 and 3
of decomposition. The results show that NSE values of decomposed Rc at
level 3 are enhanced significantly in comparison with undecomposed
Rc, mainly regarding the test set which shows a value of 0.90 being
much higher compared to the value of 0.15 for that of the test dataset of
undecomposed signal. Additionally, the results of level 3 of decompo-
sition remain almost constant compared to level 1 except for the test set
where it improves. This enhancement may refer to decomposing the
noise in two components (D1 and D2) which allows the LSTM to better
fit the noise components.

The LSTM model has been successfully implemented across different
levels of decomposition, demonstrating very good accuracy. In contrast,
the LSTM fails to fit the undecomposed Rc adequately, yielding less
acceptable accuracy. This underscores the effectiveness of leveraging
decomposition techniques in conjunction with the LSTM model for
improved accuracy in modelling the Rc. This indicates the importance of
considering the complex details captured at various decomposition
levels. However, the findings show that the accuracy of the developed
models remained nearly constant for levels beyond 3.

The integration of ERA5 land service data with observed data in the
LSTM model showcases remarkable resilience (Pelosi et al., 2020;
Muñoz-Sabater et al., 2021), as the model’s accuracy and simulation
performance remain unaffected. This seamless combination underscores
the robustness of the LSTM framework in accommodating diverse data
sources, reaffirming its reliability in capturing the intricacies of hydro-
logical dynamics. The methodology presented in this paper can indeed
be extended to larger scales, though it is essential to consider several
factors. One of the primary advantages of this approach is its reliance on
widely available meteorological and hydrological data, which makes it
feasible to apply in various regions, even if only small amount of high-
resolution data is available. However, when scaling up to regional or
global levels, challenges such as data heterogeneity, varying climatic
conditions, and differing land-use patterns must be addressed. More-
over, in highly anthropized basins, where human activities significantly
alter the hydrological cycle, additional factors such as water

Fig. 6. Results of fitting Rc details by LSTM model (A look-back window = 4) a) Loss value of D3, b) Loss value of A3, c) RMSE and NSE of D3 d) RMSE and NSE of
A3. Months since January 1961.

Fig. 7. Results (RMSE and NSE) of fitting a) modelled Rc without decomposi-
tion b) a reconstructed Rc modelled at level 3 of decomposition. Months since
January 1961.
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withdrawals, reservoir regulations, and land-use changes must be
incorporated into the model. This necessitates more complex modelling
frameworks that can account for these variables. Similarly, in regions
with limited data availability, the accuracy of Rc predictions may be
reduced. In such cases, employing satellite data and integrating multiple
data sources can help improve model performance. Overall, while our
model provides a robust framework for Rc estimation, careful consid-
eration of local conditions and data quality is essential when applying it
to different scales and contexts. Future work should focus on enhancing
model adaptability and accuracy in diverse and data-limited
environments.

To better visualize the results of modelling Rc at level 3 of decom-
position, 3 insets have been illustrated in Fig. B1. These insets (Panels b-
d of Fig. B1) refer to the windows among different sets to show more
detailed information about the fitted sets. The results indicate a reduc-
tion in peak underestimation when combining the LSTM and decom-
position method compared to the results of undecomposed Rc.

5. Conclusions

This study introduces an innovative LSTM modelling approach for
the prediction of Rc on the basis of key hydrometeorological variables,
employing the Rur basin in Germany as a case study for the period 1961
to 2021. The findings reveal that the standard LSTM model performed
inadequately when applied to undecomposed Rc, yielding unsatisfactory
accuracy across training, validation, and test sets. However, although
optimizing the look-back window to 4 months notably improved the
modelling in comparison to other values (1–6 months lag), it was still a
challenge to predict Rc with acceptable accuracy. Using the LSTMmodel
in conjunction with Maximal overlap Discrete Wavelet Transform
demonstrated effectiveness across various levels of decomposition. In
our study we decomposed the Rc signal in three levels spanning fre-
quency levels of 0–0.061 and 0.056–0.500 cycle/month for approxi-
mation and details, respectively. The NSE values of 0.97, 0.95, and 0.90
for the training, validation, and test sets at level 3 of decomposition,
underscore the robust performance of this approach. Notably, the results
showcase a very good accuracy of decomposition approach compared to

undecomposed Rc. Additionally, we found an approximately 6 %
enhancement in the NSE value of the test set when modelling at level 3
compared to level 1, while the NSE values for the training and validation
sets remained constant. These findings suggest the potential application
of this innovative technique through hydrological modelling to enhance
the reliability of prediction in future studies.
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Appendix A. WCA between Rc and input variables

Rahi et al. 2023 employed the continuous WCA to assess the distribution of correlation between Rc and hydroclimatic variables. The normalized
cross-wavelet spectrum, known as the coherence coefficient being localized in time, highlights the maximum correlation between the two signals (Graf
et al., 2014). In our study, we assessed the phase shift and lag between the benchmark signal (Rc) and predictors (i.e., P, SWS, T, and ET). The phase
shift between the base signal (Rc) and the second signal (e.g., SWS) is quantified as follows according to Rahmati et al. (2020):

Phaseshift =
Phaseangel

2π ×m (A.1)

where, m is the period of signals, and the phase shift (in months) and phase angle (in radians) represent the timing difference between consecutive
maximal values of the base and second signals. To assess the control relationship between Rc and hydroclimatic parameters, the concept of “lag”
defined as follows:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

lag = Phaseshift, if −
m
4
≤ Phaseshift ≤

m
4

lag =
m
2
− |Phase shift|, ifPhaseshift <

m
4

lag = Phaseshift −
m
2
, ifPhaseshift >

m
4

(A.2)

Negative lag values implicitly indicate that the second signal controls the base signal, while positive lag values signify the reverse.
WCA indicates that the correlation between Rc and P is erratic and unstable (see panel (a) of Fig. A1), and in most cycles (see panel (e) of Fig. A1)

correlation is insignificant (Coherence < 0.5). This suggests that basin-wide seasonality is not predominant, and Rc is more influenced by water
management and human-induced climate change interventions. Scale-averaged phase shift plot shows that P lags 0–5 months behind the Rc, while the
negative values of lag indicate that P controls the Rc in the whole time span except for 2011–2015 (panel (c) of Fig. A1). Panel (d) of Fig. A1 depicts
increasing lag and phase shift with cycle increments, with the lag showing a lesser increase compared to the phase shift.
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Fig. A1. WCA (a) between Rc and P, (b) scale-averaged coherence and normalized P time series, (c) scale-averaged phase shift, (d) time-averaged phase shift, and (e)
time-averaged coherence in Rur basin at Stah outlet from 1961 to 2021.

WCA reveals a notable positive correlation between Rc and SWS in the annual cycle (see panel (a) of Fig. A2). In panel (e) of Fig. A2, as a coefficient
of 0.8 is observed. Panel (b) of Fig. A2 captures the 1976–1978 drought, as one of the most-cited drought event (Müller, 2020), resulting in a sig-
nificant decrease in SWS to around 0.8 m, which notably influences the Rc-SWS correlation. Panel (d) of Fig. A2 indicates minimal lag in cycles shorter
than a year, with increasing phase shift and lag values as the cycle lengthens. Furthermore, panel (c) of Fig. A2 indicates a lag of 0–5 months, meaning
that SWS lags behind the Rc. The lag value unveils a detailed description of evolving dynamics within the system. From 1961 to 2011, negative values
indicate that SWS controlled Rc, but in the subsequent period (2011–2021), with positive lag value Rc assumed dominance, showcasing a complex
interaction. This dynamic shift adds depth to our understanding of hydrological processes, highlighting adaptability and reciprocal influence.

Fig. A2. WCA (a) between Rc and SWS, (b) scale-averaged coherence and normalized SWS time series, (c) scale-averaged phase shift (d) time-averaged phase shift
(e) time-averaged coherence in Rur basin at Stah outlet from 1961 to 2021.

WCA shows a noteworthy negative correlation between Rc and ET in the annual cycle (see panel (a) of Fig. A3), and the coherence coefficient
attains a substantial value of 0.9 during this cycle (see panel (e) of Fig. A3). The dynamic relationship between Rc and ET is highlighted by varying lag
patterns, notably during significant periods from 1980 to 2012. Examining panel (c) of Fig. A3, exhibits that ET lags behind Rc by 0 to 5 months
throughout the entire time span, except during 1980–1992 and 2003–2012. Notably, during these intervals with negative lag values, ET exerts control
over Rc. Contrarily, panel (d) of Fig. A3 illustrates no lag in the cycle less than annual, indicating synchronised behaviour between Rc and ET
considering the time-average frame.
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Fig. A3. WCA (a) between Rc and ET, (b) scale-averaged coherence and normalized ET time series, (c) scale-averaged phase shift, (d) time-averaged phase shift, and
(e) time-averaged coherence in Rur basin at Stah outlet from 1961 to 2021.

WCA points out a not-negligible negative correlation between the Rc and T within the annual cycle (see panel (a) of Fig. A4). The coherence
coefficient attains a considerable value of 0.9 during this annual cycle (see panel (e) of Fig. A4). Further insights from panel (c) of Fig. A4 reveal that T
lags 0–6 months behind Rc. Across the vast majority of the observed time span, T consistently lags behind Rc, exercising its influence over the Rc,
however, the recent years mark a shift in this established trend. Examination of the time-averaged plot underscores a consistent minor lag present in
nearly all cycles (see panel (d) of Fig. A4), shedding light on temperature’s proactive role in shaping the dynamics of Rc. This relationship emphasises
the complex interplay between T and the Rc, providing valuable insights into the hydrological response to T variations over time.

Fig. A4. WCA (a) between Rc and T, (b) scale-averaged coherence and normalized T time series, (c) scale-averaged phase shift, (d) time-averaged phase shift, and (e)
time-averaged coherence in Rur basin at Stah outlet from 1961 to 2021.

Appendix B. A closer look to the result of model accuracy at level 3 of decomposition

The results presented in Fig. B1 highlight the improved performance of the model in forecasting Rc at level 3 of decomposition by combining
MODWT with LSTM. Panel a shows the overall comparison of the undecomposed Rc values (blue solid line) with the predicted values from the train
(red dashed line), validation (green dashed line), and test (yellow dashed line) sets, indicating a general alignment. Panels b, c, and d provide a
detailed view of the model’s performance on the training, validation, and test sets, respectively. In these insets, the close alignment between the
predicted and undecomposed Rc values underscores the model’s ability to accurately capture peaks and overall trends. This improvement demon-
strates the effectiveness of integrating MODWT with LSTM in enhancing the model’s capability to learn and predict complex patterns in the data.
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Fig. B1. a) A reconstructed Rc modelled at level 5 of decomposition, insets of the b) train set from March 1985 to August 1993, c) validation set from November 2001
to April 2010, and d) test set from November 2011 to April 2020.
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Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G.,
Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D.G.,
Piles, M., Rodríguez-Fernández, N.J., Zsoter, E., Buontempo, C., Thépaut, J.N., 2021.
ERA5-Land: a state-of-the-art global reanalysis dataset for land applications. Earth
Syst. Sci. Data 13 (9). https://doi.org/10.5194/essd-13-4349-2021.

Naabil, E., Lamptey, B.L., Arnault, J., Kunstmann, H., Olufayo, A., 2017. Water resources
management using the WRF-Hydro modelling system: case-study of the Tono dam in
West Africa. J. Hydrol.: Reg. Stud. 12 https://doi.org/10.1016/j.ejrh.2017.05.010.

Napolitano, G., Serinaldi, F., See, L., 2011. Impact of EMD decomposition and random
initialisation of weights in ANN hindcasting of daily stream flow series: an empirical
examination. J. Hydrol. 406 (3–4) https://doi.org/10.1016/j.jhydrol.2011.06.015.

Nhita, F., Saepudin, D., Adiwijaya, Wisesty, U.N. 2016. Comparative Study of Moving
Average on Rainfall Time Series Data for Rainfall Forecasting Based on Evolving
Neural Network Classifier. Proceedings - 2015 3rd International Symposium on
Computational and Business Intelligence, ISCBI 2015. https://doi.org/10.1109/
ISCBI.2015.27.
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