001031239 001__ 1031239
001031239 005__ 20240923212340.0
001031239 037__ $$aFZJ-2024-05627
001031239 1001_ $$0P:(DE-Juel1)201437$$aMaharaj, Dalini$$b0$$ufzj
001031239 1112_ $$a13th Design and Engineering of Neutron Instruments MeetingDENIM XIII$$cJAEA Tokai Mirai Base, Tokai, Ibaraki$$d2024-09-24 - 2024-09-30$$gDENIM XIII$$wJapan
001031239 245__ $$aTOWARDS THE DEVELOPMENT OF A COMPACT VERY COLD NEUTRON SOURCE FOR THE HIGH BRILLIANCE NEUTRON SOURCE
001031239 260__ $$c2024
001031239 3367_ $$033$$2EndNote$$aConference Paper
001031239 3367_ $$2BibTeX$$aINPROCEEDINGS
001031239 3367_ $$2DRIVER$$aconferenceObject
001031239 3367_ $$2ORCID$$aCONFERENCE_POSTER
001031239 3367_ $$2DataCite$$aOutput Types/Conference Poster
001031239 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1727091126_25132$$xInvited
001031239 520__ $$aVery cold neutron (VCN) sources present an exciting opportunity for scientists to access unprecedented length and time scales, and achieve improved sensitivity in neutron experiments [1]. VCNs are defined over a wide spectral range, from 1 meV (9 Å) down to a few hundred neV (> several 100 Å). Wavelengths of up to several tens of Å are of particular interest to many research communities. Recently, thermal scattering kernels were developed for candidate VCN moderator and reflector materials under the HighNESS project [2]. These advances present an opportunity for the conceptual design of VCN sources at newly emerging high-current compact accelerator-driven neutron sources (Hi-CANS). The High Brilliance neutron Source (HBS) is a Hi-CANS project which hosts a linear accelerator delivering a pulsed proton beam of energy, 70 MeV, and peak current, 100 mA, to a novel high-power tantalum target and compact target-moderator-reflector (TMR) [3]. A low-dimensional parahydrogen cold moderator has already been designed for the HBS and tested at the JULIC Neutron Platform. Starting from this concept, a Monte Carlo study is underway to develop a target moderator reflector (TMR) to realise a very cold neutron source for the HBS. The low dimensional parahydrogen moderator will serve as an efficient cold neutron converter, and within it, an appropriate secondary moderator is implemented to shift the neutron spectrum generated by the parahydrogen to lower energies, or equivalently longer wavelengths. As methane is known to generate a colder neutron spectrum than parahydrogen, it is currently being investigated to shift the cold spectrum of parahydrogen to lower energies. Figure 1 a.) shows a geometry with parahydrogen only and that with methane embedded in parahydrogen. Figure 1 b.) clearly shows that methane shifts the spectrum to lower energies. Results from a full optimization of this moderator-reflector geometry conducted in PHITS shall be presented. [1] J.M Carpenter and B.J. Micklich, ANL (05/42) (2005).[2] V. Santoro et al, (2023). Nuclear Science and Engineering, 198 31–63 (2023)[3] T. Brückel, T. Gutberlet (Eds.), Conceptual Design Report Jülich High Brilliance Neutron Source, ISBN 978-3-95806-501-7 (Forschungszentrum Jülich, 2020).
001031239 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
001031239 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x1
001031239 7001_ $$0P:(DE-Juel1)7897$$aLi, Jingjing$$b1$$ufzj
001031239 7001_ $$0P:(DE-Juel1)169802$$aBaggemann, Johannes$$b2$$ufzj
001031239 7001_ $$0P:(DE-Juel1)130928$$aRücker, Ulrich$$b3$$ufzj
001031239 7001_ $$0P:(DE-Juel1)131055$$aZakalek, Paul$$b4$$ufzj
001031239 7001_ $$0P:(DE-Juel1)168124$$aGutberlet, Thomas$$b5$$ufzj
001031239 909CO $$ooai:juser.fz-juelich.de:1031239$$pVDB
001031239 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)201437$$aForschungszentrum Jülich$$b0$$kFZJ
001031239 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)7897$$aForschungszentrum Jülich$$b1$$kFZJ
001031239 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169802$$aForschungszentrum Jülich$$b2$$kFZJ
001031239 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130928$$aForschungszentrum Jülich$$b3$$kFZJ
001031239 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131055$$aForschungszentrum Jülich$$b4$$kFZJ
001031239 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168124$$aForschungszentrum Jülich$$b5$$kFZJ
001031239 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0
001031239 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x1
001031239 9141_ $$y2024
001031239 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x0
001031239 9201_ $$0I:(DE-Juel1)JCNS-HBS-20180709$$kJCNS-HBS$$lHigh Brilliance Source$$x1
001031239 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
001031239 980__ $$aposter
001031239 980__ $$aVDB
001031239 980__ $$aI:(DE-Juel1)JCNS-2-20110106
001031239 980__ $$aI:(DE-Juel1)JCNS-HBS-20180709
001031239 980__ $$aI:(DE-82)080009_20140620
001031239 980__ $$aUNRESTRICTED