TY - JOUR
AU - Lotter, Leon
AU - Saberi, Amin
AU - Hansen, Justine Y.
AU - Misic, Bratislav
AU - Paquola, Casey
AU - Barker, Gareth J.
AU - Bokde, Arun L. W.
AU - Desrivières, Sylvane
AU - Flor, Herta
AU - Grigis, Antoine
AU - Garavan, Hugh
AU - Gowland, Penny
AU - Heinz, Andreas
AU - Brühl, Rüdiger
AU - Martinot, Jean-Luc
AU - Paillère, Marie-Laure
AU - Artiges, Eric
AU - Papadopoulos Orfanos, Dimitri
AU - Paus, Tomáš
AU - Poustka, Luise
AU - Hohmann, Sarah
AU - Fröhner, Juliane H.
AU - Smolka, Michael N.
AU - Vaidya, Nilakshi
AU - Walter, Henrik
AU - Whelan, Robert
AU - Schumann, Gunter
AU - Nees, Frauke
AU - Banaschewski, Tobias
AU - Eickhoff, Simon B.
AU - Dukart, Juergen
TI - Regional patterns of human cortex development correlate with underlying neurobiology
JO - Nature Communications
VL - 15
IS - 1
SN - 2041-1723
CY - [London]
PB - Nature Publishing Group UK
M1 - FZJ-2024-05633
SP - 7987
PY - 2024
AB - Human brain morphology undergoes complex changes over the lifespan. Despite recent progress in tracking brain development via normative models, current knowledge of underlying biological mechanisms is highly limited. We demonstrate that human cortical thickness development and aging trajectories unfold along patterns of molecular and cellular brain organization, traceable from population-level to individual developmental trajectories. During childhood and adolescence, cortex-wide spatial distributions of dopaminergic receptors, inhibitory neurons, glial cell populations, and brain-metabolic features explain up to 50% of the variance associated with a lifespan model of regional cortical thickness trajectories. In contrast, modeled cortical thickness change patterns during adulthood are best explained by cholinergic and glutamatergic neurotransmitter receptor and transporter distributions. These relationships are supported by developmental gene expression trajectories and translate to individual longitudinal data from over 8000 adolescents, explaining up to 59% of developmental change at cohort- and 18% at single-subject level. Integrating neurobiological brain atlases with normative modeling and population neuroimaging provides a biologically meaningful path to understand brain development and aging in living humans.
LB - PUB:(DE-HGF)16
DO - DOI:10.1038/s41467-024-52366-7
UR - https://juser.fz-juelich.de/record/1031255
ER -