001031287 001__ 1031287
001031287 005__ 20250203133209.0
001031287 0247_ $$2doi$$a10.1093/cercor/bhae405
001031287 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-05647
001031287 0247_ $$2pmid$$a39462814
001031287 0247_ $$2WOS$$aWOS:001343576100001
001031287 037__ $$aFZJ-2024-05647
001031287 082__ $$a610
001031287 1001_ $$0P:(DE-Juel1)162130$$aSenk, Johanna$$b0$$eCorresponding author$$ufzj
001031287 245__ $$aReconciliation of weak pairwise spike-train correlations and highly coherent local field potentials across space
001031287 260__ $$aOxford$$bOxford Univ. Press$$c2024
001031287 3367_ $$2DRIVER$$aarticle
001031287 3367_ $$2DataCite$$aOutput Types/Journal article
001031287 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1730883649_30539
001031287 3367_ $$2BibTeX$$aARTICLE
001031287 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001031287 3367_ $$00$$2EndNote$$aJournal Article
001031287 520__ $$aMulti-electrode arrays covering several square millimeters of neural tissue provide simultaneous access to population signals such as extracellular potentials and spiking activity of one hundred or more individual neurons. The interpretation of the recorded data calls for multiscale computational models with corresponding spatial dimensions and signal predictions. Multi-layer spiking neuron network models of local cortical circuits covering about 1 mm² have been developed, integrating experimentally obtained neuron-type-specific connectivity data and reproducing features of observed in-vivo spiking statistics. Local field potentials can be computed from the simulated spiking activity. We here extend a local network and local field potential model to an area of 4x4 mm², preserving the neuron density and introducing distance-dependent connection probabilities and conduction delays. We find that the upscaling procedure preserves the overall spiking statistics of the original model and reproduces asynchronous irregular spiking across populations and weak pairwise spike–train correlations in agreement with experimental recordings from sensory cortex. Also compatible with experimental observations, the correlation of local field potential signals is strong and decays over a distance of several hundred micrometers. Enhanced spatial coherence in the low-gamma band around 50 Hz may explain the recent report of an apparent band-pass filter effect in the spatial reach of the local field potential.
001031287 536__ $$0G:(DE-HGF)POF4-5231$$a5231 - Neuroscientific Foundations (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001031287 536__ $$0G:(DE-HGF)POF4-5235$$a5235 - Digitization of Neuroscience and User-Community Building (POF4-523)$$cPOF4-523$$fPOF IV$$x1
001031287 536__ $$0G:(EU-Grant)720270$$aHBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)$$c720270$$fH2020-Adhoc-2014-20$$x2
001031287 536__ $$0G:(DE-Juel1)HGF-SMHB-2013-2017$$aSMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)$$cHGF-SMHB-2013-2017$$fSMHB$$x3
001031287 536__ $$0G:(DE-Juel1)JL SMHB-2021-2027$$aJL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)$$cJL SMHB-2021-2027$$x4
001031287 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x5
001031287 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x6
001031287 536__ $$0G:(EU-Grant)101147319$$aEBRAINS 2.0 - EBRAINS 2.0: A Research Infrastructure to Advance Neuroscience and Brain Health (101147319)$$c101147319$$fHORIZON-INFRA-2022-SERV-B-01$$x7
001031287 536__ $$0G:(DE-Juel1)jinb33_20121101$$aBrain-Scale Simulations (jinb33_20121101)$$cjinb33_20121101$$fBrain-Scale Simulations$$x8
001031287 536__ $$0G:(DE-Juel1)jinb33_20220812$$aBrain-Scale Simulations (jinb33_20220812)$$cjinb33_20220812$$fBrain-Scale Simulations$$x9
001031287 536__ $$0G:(GEPRIS)491111487$$aDFG project G:(GEPRIS)491111487 - Open-Access-Publikationskosten / 2022 - 2024 / Forschungszentrum Jülich (OAPKFZJ) (491111487)$$c491111487$$x10
001031287 588__ $$aDataset connected to DataCite
001031287 7001_ $$0P:(DE-Juel1)164166$$aHagen, Espen$$b1
001031287 7001_ $$0P:(DE-Juel1)138512$$avan Albada, Sacha$$b2$$ufzj
001031287 7001_ $$0P:(DE-Juel1)144174$$aDiesmann, Markus$$b3$$ufzj
001031287 773__ $$0PERI:(DE-600)1483485-6$$a10.1093/cercor/bhae405$$n10$$p1-29$$tCerebral cortex$$v34$$x1047-3211$$y2024
001031287 8564_ $$uhttps://juser.fz-juelich.de/record/1031287/files/Invoice_SOA24LT011099.pdf
001031287 8564_ $$uhttps://juser.fz-juelich.de/record/1031287/files/Invoice_SOA24LT011099.gif?subformat=icon$$xicon
001031287 8564_ $$uhttps://juser.fz-juelich.de/record/1031287/files/Invoice_SOA24LT011099.jpg?subformat=icon-1440$$xicon-1440
001031287 8564_ $$uhttps://juser.fz-juelich.de/record/1031287/files/Invoice_SOA24LT011099.jpg?subformat=icon-180$$xicon-180
001031287 8564_ $$uhttps://juser.fz-juelich.de/record/1031287/files/Invoice_SOA24LT011099.jpg?subformat=icon-640$$xicon-640
001031287 8564_ $$uhttps://juser.fz-juelich.de/record/1031287/files/bhae405.pdf$$yOpenAccess
001031287 8767_ $$8SOA24LT011099$$92024-09-25$$a1200207282$$d2024-10-08$$eHybrid-OA$$jZahlung erfolgt
001031287 909CO $$ooai:juser.fz-juelich.de:1031287$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001031287 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162130$$aForschungszentrum Jülich$$b0$$kFZJ
001031287 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)164166$$aExternal Institute$$b1$$kExtern
001031287 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138512$$aForschungszentrum Jülich$$b2$$kFZJ
001031287 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144174$$aForschungszentrum Jülich$$b3$$kFZJ
001031287 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5231$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001031287 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5235$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x1
001031287 9141_ $$y2024
001031287 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001031287 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-23
001031287 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-23
001031287 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
001031287 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-23
001031287 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001031287 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-28$$wger
001031287 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-28
001031287 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-28
001031287 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-28
001031287 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-28
001031287 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-28
001031287 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-28
001031287 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCEREB CORTEX : 2022$$d2024-12-28
001031287 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-28
001031287 920__ $$lyes
001031287 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lComputational and Systems Neuroscience$$x0
001031287 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x1
001031287 980__ $$ajournal
001031287 980__ $$aVDB
001031287 980__ $$aUNRESTRICTED
001031287 980__ $$aI:(DE-Juel1)IAS-6-20130828
001031287 980__ $$aI:(DE-Juel1)INM-10-20170113
001031287 980__ $$aAPC
001031287 9801_ $$aAPC
001031287 9801_ $$aFullTexts