001     1031456
005     20241107210038.0
037 _ _ |a FZJ-2024-05675
041 _ _ |a English
100 1 _ |a Dickscheid, Timo
|0 P:(DE-Juel1)165746
|b 0
|u fzj
111 2 _ |a 8th BigBrain Workshop
|c Padua
|d 2024-09-09 - 2024-09-11
|w Italy
245 _ _ |a Making the multiscale organization of the human brain accessible to reproducible workflows using siibra-python
260 _ _ |c 2024
336 7 _ |a lecture
|2 DRIVER
336 7 _ |a Generic
|0 31
|2 EndNote
336 7 _ |a MISC
|2 BibTeX
336 7 _ |a Lecture
|b lecture
|m lecture
|0 PUB:(DE-HGF)17
|s 1730972560_6239
|2 PUB:(DE-HGF)
|x Invited
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Text
|2 DataCite
520 _ _ |a Understanding the human brain requires access to experimental data that capture relevant aspects of brain organization across a broad range of scales and modalities, and typically originate from a plethora of resources. To make multimodal and multidimensional measures of brain organization accessible, they need to be integrated into a common reference framework and exposed via suitable software interfaces. This tutorial will introduce participants to siibra toolsuite, which provides access to a multilevel atlas of the human brain built from “big data”. The atlas integrates brain reference templates at different spatial scales, complementary parcellation maps, and a wide range of multimodal data features. It links macroanatomical concepts and their inter-subject variability with measurements of the microstructural composition and intrinsic variance of brain regions, using cytoarchitectonic maps as a reference, and integrating the BigBrain model as microscopic reference template. The tool suite includes a web-based 3D viewer (siibra-explorer) and a Python library (siibra-python) to support a broad range of neuroscientific use cases. It makes use of EBRAINS as a data sharing platform and cloud infrastructure and implements interfaces to other neuroscience resources. The focus of this tutorial will be on building reproducible workflows with BigBrain data using the siibra-python library.
536 _ _ |a 5251 - Multilevel Brain Organization and Variability (POF4-525)
|0 G:(DE-HGF)POF4-5251
|c POF4-525
|f POF IV
|x 0
536 _ _ |a 5254 - Neuroscientific Data Analytics and AI (POF4-525)
|0 G:(DE-HGF)POF4-5254
|c POF4-525
|f POF IV
|x 1
536 _ _ |a HIBALL - Helmholtz International BigBrain Analytics and Learning Laboratory (HIBALL) (InterLabs-0015)
|0 G:(DE-HGF)InterLabs-0015
|c InterLabs-0015
|x 2
536 _ _ |a EBRAINS 2.0 - EBRAINS 2.0: A Research Infrastructure to Advance Neuroscience and Brain Health (101147319)
|0 G:(EU-Grant)101147319
|c 101147319
|f HORIZON-INFRA-2022-SERV-B-01
|x 3
536 _ _ |a Helmholtz AI - Helmholtz Artificial Intelligence Coordination Unit – Local Unit FZJ (E.40401.62)
|0 G:(DE-Juel-1)E.40401.62
|c E.40401.62
|x 4
700 1 _ |a Bludau, Sebastian
|0 P:(DE-Juel1)131636
|b 1
|u fzj
856 4 _ |u https://events.hifis.net/event/1416/contributions/11503/
909 C O |o oai:juser.fz-juelich.de:1031456
|p openaire
|p VDB
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)165746
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131636
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5251
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5254
|x 1
914 1 _ |y 2024
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-1-20090406
|k INM-1
|l Strukturelle und funktionelle Organisation des Gehirns
|x 0
980 _ _ |a lecture
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-1-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21