001031465 001__ 1031465
001031465 005__ 20250203133209.0
001031465 0247_ $$2doi$$a10.1162/netn_a_00382
001031465 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-05684
001031465 0247_ $$2pmid$$a39735514
001031465 0247_ $$2WOS$$aWOS:001380489600002
001031465 037__ $$aFZJ-2024-05684
001031465 082__ $$a610
001031465 1001_ $$0P:(DE-HGF)0$$aKim, Sunghun$$b0
001031465 245__ $$aComparison of different group-level templates in gradient-based multimodal connectivity analysis
001031465 260__ $$aCambridge, MA$$bThe MIT Press$$c2024
001031465 3367_ $$2DRIVER$$aarticle
001031465 3367_ $$2DataCite$$aOutput Types/Journal article
001031465 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1735810587_31056
001031465 3367_ $$2BibTeX$$aARTICLE
001031465 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001031465 3367_ $$00$$2EndNote$$aJournal Article
001031465 520__ $$aThe study of large-scale brain connectivity is increasingly adopting unsupervised approaches that derive low-dimensional spatial representations from high-dimensional connectomes, referred to as gradient analysis. When translating this approach to study interindividual variations in connectivity, one technical issue pertains to the selection of an appropriate group-level template to which individual gradients are aligned. Here, we compared different group-level template construction strategies using functional and structural connectome data from neurotypical controls and individuals with autism spectrum disorder (ASD) to identify between-group differences. We studied multimodal magnetic resonance imaging data obtained from the Autism Brain Imaging Data Exchange (ABIDE) Initiative II and the Human Connectome Project (HCP). We designed six template construction strategies that varied in whether (1) they included typical controls in addition to ASD; or (2) they mapped from one dataset onto another. We found that aligning a combined subject template of the ASD and control subjects from the ABIDE Initiative onto the HCP template exhibited the most pronounced effect size. This strategy showed robust identification of ASD-related brain regions for both functional and structural gradients across different study settings. Replicating the findings on focal epilepsy demonstrated the generalizability of our approach. Our findings will contribute to improving gradient-based connectivity research.
001031465 536__ $$0G:(DE-HGF)POF4-5252$$a5252 - Brain Dysfunction and Plasticity (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001031465 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x1
001031465 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001031465 7001_ $$0P:(DE-HGF)0$$aYoo, Seulki$$b1
001031465 7001_ $$0P:(DE-HGF)0$$aXie, Ke$$b2
001031465 7001_ $$0P:(DE-HGF)0$$aRoyer, Jessica$$b3
001031465 7001_ $$0P:(DE-HGF)0$$aLarivière, Sara$$b4
001031465 7001_ $$0P:(DE-HGF)0$$aByeon, Kyoungseob$$b5
001031465 7001_ $$0P:(DE-HGF)0$$aLee, Jong Eun$$b6
001031465 7001_ $$0P:(DE-HGF)0$$aPark, Yeongjun$$b7
001031465 7001_ $$0P:(DE-Juel1)173843$$aValk, Sofie L.$$b8$$ufzj
001031465 7001_ $$0P:(DE-HGF)0$$aBernhardt, Boris C.$$b9
001031465 7001_ $$0P:(DE-HGF)0$$aHong, Seok-Jun$$b10
001031465 7001_ $$0P:(DE-HGF)0$$aPark, Hyunjin$$b11$$eCorresponding author
001031465 7001_ $$0P:(DE-HGF)0$$aPark, Bo-yong$$b12$$eCorresponding author
001031465 773__ $$0PERI:(DE-600)2900481-0$$a10.1162/netn_a_00382$$gp. 1 - 23$$n4$$p1009–1031$$tNetwork neuroscience$$v8$$x2472-1751$$y2024
001031465 8564_ $$uhttps://juser.fz-juelich.de/record/1031465/files/netn_a_00382.pdf$$yOpenAccess
001031465 909CO $$ooai:juser.fz-juelich.de:1031465$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001031465 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173843$$aForschungszentrum Jülich$$b8$$kFZJ
001031465 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)173843$$a Max Planck Institute for Cognitive and Brain Sciences, Leipzig$$b8
001031465 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon, Republic of Korea * Corresponding Authors: hyunjinp@skku.edu; boyongpark@korea.ac.kr$$b11
001031465 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea * Corresponding Authors: hyunjinp@skku.edu; boyongpark@korea.ac.kr$$b12
001031465 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5252$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001031465 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x1
001031465 9141_ $$y2024
001031465 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-27
001031465 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001031465 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-02-09T16:05:29Z
001031465 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-02-09T16:05:29Z
001031465 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-27
001031465 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-10-27
001031465 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001031465 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-02-09T16:05:29Z
001031465 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-10-27
001031465 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNETW NEUROSCI : 2022$$d2025-01-01
001031465 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-01
001031465 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-01
001031465 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-01
001031465 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-01-01
001031465 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-01
001031465 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2025-01-01
001031465 920__ $$lyes
001031465 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
001031465 980__ $$ajournal
001031465 980__ $$aVDB
001031465 980__ $$aUNRESTRICTED
001031465 980__ $$aI:(DE-Juel1)INM-7-20090406
001031465 9801_ $$aFullTexts