001     1031473
005     20250203133209.0
024 7 _ |a 10.1093/cercor/bhae409
|2 doi
024 7 _ |a 10.34734/FZJ-2024-05686
|2 datacite_doi
024 7 _ |a 39428578
|2 pmid
024 7 _ |a WOS:001336208500001
|2 WOS
037 _ _ |a FZJ-2024-05686
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Pronold, Jari
|0 P:(DE-Juel1)165321
|b 0
245 _ _ |a Multi-Scale Spiking Network Model of Human Cerebral Cortex
260 _ _ |a Oxford
|c 2024
|b Oxford Univ. Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1730817016_26266
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Although the structure of cortical networks provides the necessary substrate for their neuronal activity, the structure alone does not suffice to understand the activity. Leveraging the increasing availability of human data, we developed a multi-scale, spiking network model of human cortex to investigate the relationship between structure and dynamics. In this model, each area in one hemisphere of the Desikan–Killiany parcellation is represented by a 1 $mm^2$ column with a layered structure. The model aggregates data across multiple modalities, including electron microscopy, electrophysiology, morphological reconstructions, and diffusion tensor imaging, into a coherent framework. It predicts activity on all scales from the single-neuron spiking activity to the area-level functional connectivity. We compared the model activity with human electrophysiological data and human resting-state functional magnetic resonance imaging (fMRI) data. This comparison reveals that the model can reproduce aspects of both spiking statistics and fMRI correlations if the inter-areal connections are sufficiently strong. Furthermore, we study the propagation of a single-spike perturbation and macroscopic fluctuations through the network. The open-source model serves as an integrative platform for further refinements and future in silico studies of human cortical structure, dynamics, and function.
536 _ _ |a 5231 - Neuroscientific Foundations (POF4-523)
|0 G:(DE-HGF)POF4-5231
|c POF4-523
|f POF IV
|x 0
536 _ _ |a DFG project G:(GEPRIS)347572269 - Heterogenität von Zytoarchitektur, Chemoarchitektur und Konnektivität in einem großskaligen Computermodell der menschlichen Großhirnrinde (347572269)
|0 G:(GEPRIS)347572269
|c 347572269
|x 1
536 _ _ |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)
|0 G:(EU-Grant)945539
|c 945539
|f H2020-SGA-FETFLAG-HBP-2019
|x 2
536 _ _ |a EBRAINS 2.0 - EBRAINS 2.0: A Research Infrastructure to Advance Neuroscience and Brain Health (101147319)
|0 G:(EU-Grant)101147319
|c 101147319
|f HORIZON-INFRA-2022-SERV-B-01
|x 3
536 _ _ |a JL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)
|0 G:(DE-Juel1)JL SMHB-2021-2027
|c JL SMHB-2021-2027
|x 4
536 _ _ |a Helmholtz Platform for Research Software Engineering - Preparatory Study (HiRSE_PS-20220812)
|0 G:(DE-Juel-1)HiRSE_PS-20220812
|c HiRSE_PS-20220812
|x 5
536 _ _ |a Brain-Scale Simulations (jinb33_20220812)
|0 G:(DE-Juel1)jinb33_20220812
|c jinb33_20220812
|f Brain-Scale Simulations
|x 6
536 _ _ |a DFG project G:(GEPRIS)491111487 - Open-Access-Publikationskosten / 2022 - 2024 / Forschungszentrum Jülich (OAPKFZJ) (491111487)
|0 G:(GEPRIS)491111487
|c 491111487
|x 7
588 _ _ |a Dataset connected to DataCite
700 1 _ |a van Meegen, Alexander
|0 P:(DE-Juel1)173607
|b 1
700 1 _ |a Shimoura, Renan O
|0 P:(DE-Juel1)190767
|b 2
700 1 _ |a Vollenbröker, Hannah
|0 P:(DE-Juel1)180364
|b 3
700 1 _ |a Senden, Mario
|0 0000-0002-5598-6167
|b 4
700 1 _ |a Hilgetag, Claus C
|0 0000-0003-2129-8910
|b 5
700 1 _ |a Bakker, Rembrandt
|0 P:(DE-Juel1)145578
|b 6
700 1 _ |a van Albada, Sacha J
|0 P:(DE-Juel1)138512
|b 7
|e Corresponding author
773 _ _ |a 10.1093/cercor/bhae409
|g Vol. 34, no. 10, p. bhae409
|0 PERI:(DE-600)1483485-6
|n 10
|p bhae409
|t Cerebral cortex
|v 34
|y 2024
|x 1047-3211
856 4 _ |u https://juser.fz-juelich.de/record/1031473/files/Invoice_SOA24LT011056.pdf
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/1031473/files/Invoice_SOA24LT011056.gif?subformat=icon
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/1031473/files/Invoice_SOA24LT011056.jpg?subformat=icon-1440
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/1031473/files/Invoice_SOA24LT011056.jpg?subformat=icon-180
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/1031473/files/Invoice_SOA24LT011056.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1031473/files/bhae409.pdf
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/1031473/files/humanmultiscalemodel_appendix_suppl_bhae409.pdf
856 4 _ |y Restricted
|x icon
|u https://juser.fz-juelich.de/record/1031473/files/humanmultiscalemodel_appendix_suppl_bhae409.gif?subformat=icon
856 4 _ |y Restricted
|x icon-1440
|u https://juser.fz-juelich.de/record/1031473/files/humanmultiscalemodel_appendix_suppl_bhae409.jpg?subformat=icon-1440
856 4 _ |y Restricted
|x icon-180
|u https://juser.fz-juelich.de/record/1031473/files/humanmultiscalemodel_appendix_suppl_bhae409.jpg?subformat=icon-180
856 4 _ |y Restricted
|x icon-640
|u https://juser.fz-juelich.de/record/1031473/files/humanmultiscalemodel_appendix_suppl_bhae409.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1031473
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)190767
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)145578
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)138512
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5231
|x 0
914 1 _ |y 2024
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-23
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-23
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-28
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CEREB CORTEX : 2022
|d 2024-12-28
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-28
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Computational and Systems Neuroscience
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21