001031494 001__ 1031494
001031494 005__ 20240930212511.0
001031494 037__ $$aFZJ-2024-05700
001031494 1001_ $$0P:(DE-Juel1)192138$$aSchmidt, Norberto$$b0
001031494 1112_ $$aDeutsche Neutronstreutagung$$cRWTH Aachen$$d2024-09-16 - 2024-09-18$$gDN 2024$$wGermany
001031494 245__ $$aComparison of experimental and simulated neutron cold spectra for para- and ortho-hydrogen
001031494 260__ $$c2024
001031494 3367_ $$033$$2EndNote$$aConference Paper
001031494 3367_ $$2BibTeX$$aINPROCEEDINGS
001031494 3367_ $$2DRIVER$$aconferenceObject
001031494 3367_ $$2ORCID$$aCONFERENCE_POSTER
001031494 3367_ $$2DataCite$$aOutput Types/Conference Poster
001031494 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1727695327_30878$$xInvited
001031494 520__ $$aThe High Brilliance Neutron Source (HBS) [1] project aims to develop a High-Current Accelerator-driven Neutron Source (HiCANS) for neutron scattering, analytics, and imaging. It will feature several cold neutron sources, including a liquid para-hydrogen moderator. At the Forschungszentrum Jülich, time-of-flight measurements were performed with the prototype of such a cryogenic moderator for different ratios between para- and ortho-hydrogen. In order to optimize the design of future instruments that will use this cold neutron source, an accurate description of the source characteristics is necessary, which requires simulations of the neutron transport to the detector for a comparison of simulated and experimental data.This work focuses on the comparison of various simulated spectra against experimental ones for different para- and ortho-hydrogen ratios. Several Monte Carlo codes, including MCNP, PHITS, McStas, VITESS, and KDSource, and nuclear data from the ENDF/B-VII.1, JENDL-4.0 and JENDL-5.0 libraries were utilized. The simulations started with the comparison of the proton-neutron yield spectra, continued with coupling the event files before and after the modeling of the neutron guide, and ended with the neutron time distribution at the detector. A good agreement between simulations and experiments was obtained, with a relative error below 20%.The results provide insights into the strengths and limitations of each Monte Carlo code and nuclear data library combination. Not only the observed discrepancies are discussed, but also the potential sources of uncertainty are identified. Also, the conclusions will help to improve the accuracy and reliability of neutron cold moderator designs, especially for projects that will deploy a para-hydrogen cold source such as the HBS.[1] T. Brückel et al, 2022. Technical Design Report High Brilliance Neutron Source. Forschungszentrum Jülich. https://doi.org/10.34734/FZJ-2023-03722
001031494 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
001031494 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x1
001031494 7001_ $$0P:(DE-Juel1)180458$$aSchwab, Alexander$$b1$$ufzj
001031494 7001_ $$aLi, Jingjing$$b2
001031494 7001_ $$0P:(DE-Juel1)130928$$aRücker, Ulrich$$b3$$ufzj
001031494 7001_ $$0P:(DE-Juel1)131018$$aVoigt, Jörg$$b4$$ufzj
001031494 7001_ $$0P:(DE-Juel1)178839$$aLieutenant, Klaus$$b5$$ufzj
001031494 7001_ $$0P:(DE-HGF)0$$aDamián, José Ignacio Márquez$$b6
001031494 7001_ $$0P:(DE-HGF)0$$aGranada, Rolando$$b7
001031494 7001_ $$0P:(DE-HGF)0$$aDawidowski, Javier$$b8
001031494 7001_ $$0P:(DE-Juel1)130382$$aMauerhofer, Eric$$b9$$ufzj
001031494 7001_ $$0P:(DE-Juel1)168124$$aGutberlet, Thomas$$b10$$ufzj
001031494 7001_ $$0P:(DE-Juel1)131055$$aZakalek, Paul$$b11$$ufzj
001031494 909CO $$ooai:juser.fz-juelich.de:1031494$$pVDB
001031494 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192138$$aForschungszentrum Jülich$$b0$$kFZJ
001031494 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180458$$aForschungszentrum Jülich$$b1$$kFZJ
001031494 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130928$$aForschungszentrum Jülich$$b3$$kFZJ
001031494 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131018$$aForschungszentrum Jülich$$b4$$kFZJ
001031494 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178839$$aForschungszentrum Jülich$$b5$$kFZJ
001031494 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130382$$aForschungszentrum Jülich$$b9$$kFZJ
001031494 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168124$$aForschungszentrum Jülich$$b10$$kFZJ
001031494 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131055$$aForschungszentrum Jülich$$b11$$kFZJ
001031494 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0
001031494 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x1
001031494 9141_ $$y2024
001031494 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x0
001031494 9201_ $$0I:(DE-Juel1)JCNS-HBS-20180709$$kJCNS-HBS$$lHigh Brilliance Source$$x1
001031494 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
001031494 980__ $$aposter
001031494 980__ $$aVDB
001031494 980__ $$aI:(DE-Juel1)JCNS-2-20110106
001031494 980__ $$aI:(DE-Juel1)JCNS-HBS-20180709
001031494 980__ $$aI:(DE-82)080009_20140620
001031494 980__ $$aUNRESTRICTED