001031510 001__ 1031510
001031510 005__ 20250203133209.0
001031510 0247_ $$2doi$$a10.3390/math12192998
001031510 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-05711
001031510 0247_ $$2WOS$$aWOS:001331954100001
001031510 037__ $$aFZJ-2024-05711
001031510 041__ $$aEnglish
001031510 082__ $$a510
001031510 1001_ $$0P:(DE-Juel1)188513$$aSarma, Rakesh$$b0$$eCorresponding author$$ufzj
001031510 245__ $$aPrediction of Turbulent Boundary Layer Flow Dynamics with Transformers
001031510 260__ $$aBasel$$bMDPI$$c2024
001031510 3367_ $$2DRIVER$$aarticle
001031510 3367_ $$2DataCite$$aOutput Types/Journal article
001031510 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1730796167_29935
001031510 3367_ $$2BibTeX$$aARTICLE
001031510 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001031510 3367_ $$00$$2EndNote$$aJournal Article
001031510 520__ $$aTime-marching of turbulent flow fields is computationally expensive using traditional Computational Fluid Dynamics (CFD) solvers. Machine Learning (ML) techniques can be used as an acceleration strategy to offload a few time-marching steps of a CFD solver. In this study, the Transformer (TR) architecture, which has been widely used in the Natural Language Processing (NLP) community for prediction and generative tasks, is utilized to predict future velocity flow fields in an actuated Turbulent Boundary Layer (TBL) flow. A unique data pre-processing step is proposed to reduce the dimensionality of the velocity fields, allowing the processing of full velocity fields of the actuated TBL flow while taking advantage of distributed training in a High Performance Computing (HPC) environment. The trained model is tested at various prediction times using the Dynamic Mode Decomposition (DMD) method. It is found that under five future prediction time steps with the TR, the model is able to achieve a relative Frobenius norm error of less than 5%, compared to fields predicted with a Large Eddy Simulation (LES). Finally, a computational study shows that the TR achieves a significant speed-up, offering computational savings approximately 53 times greater than those of the baseline LES solver. This study demonstrates one of the first applications of TRs on actuated TBL flow intended towards reducing the computational effort of time-marching. The application of this model is envisioned in a coupled manner with the LES solver to provide few time-marching steps, which will accelerate the overall computational process.
001031510 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001031510 536__ $$0G:(EU-Grant)951733$$aRAISE - Research on AI- and Simulation-Based Engineering at Exascale (951733)$$c951733$$fH2020-INFRAEDI-2019-1$$x1
001031510 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001031510 7001_ $$0P:(DE-HGF)0$$aHübenthal, Fabian$$b1
001031510 7001_ $$0P:(DE-Juel1)188268$$aInanc, Eray$$b2
001031510 7001_ $$0P:(DE-Juel1)165948$$aLintermann, Andreas$$b3
001031510 773__ $$0PERI:(DE-600)2704244-3$$a10.3390/math12192998$$gVol. 12, no. 19, p. 2998 -$$n19$$p2998$$tMathematics$$v12$$x2227-7390$$y2024
001031510 8564_ $$uhttps://juser.fz-juelich.de/record/1031510/files/Sarma%20et%20al._2024_Prediction%20of%20Turbulent%20Boundary%20Layer%20Flow%20Dynamics%20with%20Transformers%282%29.pdf$$yOpenAccess
001031510 8564_ $$uhttps://juser.fz-juelich.de/record/1031510/files/Sarma%20et%20al._2024_Prediction%20of%20Turbulent%20Boundary%20Layer%20Flow%20Dynamics%20with%20Transformers%282%29.gif?subformat=icon$$xicon$$yOpenAccess
001031510 8564_ $$uhttps://juser.fz-juelich.de/record/1031510/files/Sarma%20et%20al._2024_Prediction%20of%20Turbulent%20Boundary%20Layer%20Flow%20Dynamics%20with%20Transformers%282%29.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001031510 8564_ $$uhttps://juser.fz-juelich.de/record/1031510/files/Sarma%20et%20al._2024_Prediction%20of%20Turbulent%20Boundary%20Layer%20Flow%20Dynamics%20with%20Transformers%282%29.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001031510 8564_ $$uhttps://juser.fz-juelich.de/record/1031510/files/Sarma%20et%20al._2024_Prediction%20of%20Turbulent%20Boundary%20Layer%20Flow%20Dynamics%20with%20Transformers%282%29.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001031510 909CO $$ooai:juser.fz-juelich.de:1031510$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
001031510 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188513$$aForschungszentrum Jülich$$b0$$kFZJ
001031510 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188268$$aForschungszentrum Jülich$$b2$$kFZJ
001031510 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165948$$aForschungszentrum Jülich$$b3$$kFZJ
001031510 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001031510 9141_ $$y2024
001031510 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-23
001031510 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001031510 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-23
001031510 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-23
001031510 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001031510 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-23
001031510 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMATHEMATICS-BASEL : 2022$$d2024-12-17
001031510 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-17
001031510 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-17
001031510 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-04-10T15:26:39Z
001031510 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-04-10T15:26:39Z
001031510 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-04-10T15:26:39Z
001031510 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-17
001031510 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-17
001031510 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-17
001031510 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-17
001031510 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-17
001031510 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-17
001031510 920__ $$lyes
001031510 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001031510 980__ $$ajournal
001031510 980__ $$aVDB
001031510 980__ $$aUNRESTRICTED
001031510 980__ $$aI:(DE-Juel1)JSC-20090406
001031510 9801_ $$aFullTexts