001     1031510
005     20250203133209.0
024 7 _ |a 10.3390/math12192998
|2 doi
024 7 _ |a 10.34734/FZJ-2024-05711
|2 datacite_doi
024 7 _ |a WOS:001331954100001
|2 WOS
037 _ _ |a FZJ-2024-05711
041 _ _ |a English
082 _ _ |a 510
100 1 _ |a Sarma, Rakesh
|0 P:(DE-Juel1)188513
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Prediction of Turbulent Boundary Layer Flow Dynamics with Transformers
260 _ _ |a Basel
|c 2024
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1730796167_29935
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Time-marching of turbulent flow fields is computationally expensive using traditional Computational Fluid Dynamics (CFD) solvers. Machine Learning (ML) techniques can be used as an acceleration strategy to offload a few time-marching steps of a CFD solver. In this study, the Transformer (TR) architecture, which has been widely used in the Natural Language Processing (NLP) community for prediction and generative tasks, is utilized to predict future velocity flow fields in an actuated Turbulent Boundary Layer (TBL) flow. A unique data pre-processing step is proposed to reduce the dimensionality of the velocity fields, allowing the processing of full velocity fields of the actuated TBL flow while taking advantage of distributed training in a High Performance Computing (HPC) environment. The trained model is tested at various prediction times using the Dynamic Mode Decomposition (DMD) method. It is found that under five future prediction time steps with the TR, the model is able to achieve a relative Frobenius norm error of less than 5%, compared to fields predicted with a Large Eddy Simulation (LES). Finally, a computational study shows that the TR achieves a significant speed-up, offering computational savings approximately 53 times greater than those of the baseline LES solver. This study demonstrates one of the first applications of TRs on actuated TBL flow intended towards reducing the computational effort of time-marching. The application of this model is envisioned in a coupled manner with the LES solver to provide few time-marching steps, which will accelerate the overall computational process.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a RAISE - Research on AI- and Simulation-Based Engineering at Exascale (951733)
|0 G:(EU-Grant)951733
|c 951733
|f H2020-INFRAEDI-2019-1
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Hübenthal, Fabian
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Inanc, Eray
|0 P:(DE-Juel1)188268
|b 2
700 1 _ |a Lintermann, Andreas
|0 P:(DE-Juel1)165948
|b 3
773 _ _ |a 10.3390/math12192998
|g Vol. 12, no. 19, p. 2998 -
|0 PERI:(DE-600)2704244-3
|n 19
|p 2998
|t Mathematics
|v 12
|y 2024
|x 2227-7390
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1031510/files/Sarma%20et%20al._2024_Prediction%20of%20Turbulent%20Boundary%20Layer%20Flow%20Dynamics%20with%20Transformers%282%29.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1031510/files/Sarma%20et%20al._2024_Prediction%20of%20Turbulent%20Boundary%20Layer%20Flow%20Dynamics%20with%20Transformers%282%29.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1031510/files/Sarma%20et%20al._2024_Prediction%20of%20Turbulent%20Boundary%20Layer%20Flow%20Dynamics%20with%20Transformers%282%29.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1031510/files/Sarma%20et%20al._2024_Prediction%20of%20Turbulent%20Boundary%20Layer%20Flow%20Dynamics%20with%20Transformers%282%29.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1031510/files/Sarma%20et%20al._2024_Prediction%20of%20Turbulent%20Boundary%20Layer%20Flow%20Dynamics%20with%20Transformers%282%29.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1031510
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)188513
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)188268
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)165948
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-23
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-23
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-23
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-23
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MATHEMATICS-BASEL : 2022
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-04-10T15:26:39Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-04-10T15:26:39Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-04-10T15:26:39Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-17
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-17
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-17
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21