001031511 001__ 1031511
001031511 005__ 20250203133209.0
001031511 0247_ $$2doi$$a10.1038/s41550-024-02349-x
001031511 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-05712
001031511 0247_ $$2WOS$$aWOS:001307355900001
001031511 037__ $$aFZJ-2024-05712
001031511 041__ $$aEnglish
001031511 082__ $$a520
001031511 1001_ $$0P:(DE-Juel1)177668$$aPfalzner, Susanne$$b0$$eCorresponding author$$ufzj
001031511 245__ $$aTrajectory of the stellar flyby that shaped the outer Solar System
001031511 260__ $$aLondon$$bNature Publishing Group$$c2024
001031511 3367_ $$2DRIVER$$aarticle
001031511 3367_ $$2DataCite$$aOutput Types/Journal article
001031511 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1731664457_6496
001031511 3367_ $$2BibTeX$$aARTICLE
001031511 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001031511 3367_ $$00$$2EndNote$$aJournal Article
001031511 520__ $$aUnlike the Solar System planets, thousands of smaller bodies beyond Neptune orbit the Sun on eccentric (e > 0.1 and i > 3°) orbits. While migration of the giant planets during the early stages of Solar System evolution could have induced substantial scattering of trans-Neptunian objects (TNOs), this process cannot account for the small number of distant TNOs (rp > 60 au) outside the planets' reach. The alternative scenario of the close flyby of another star can instead produce all these TNO features simultaneously, but the possible parameter space for such an encounter is vast. Here we compare observed TNO properties with thousands of flyby simulations to determine the specific properties of a flyby that reproduces all the different dynamical TNO populations, their locations and their relative abundances, and find that a 0 .8−0.1+0.1M⊙ star passing at a distance of rp = 110 ± 10 au, inclined by i = 70°+5 −10 , gives a near-perfect match. This flyby also replicates the retrograde TNO population, which has proved difficult to explain. Such a flyby is reasonably frequent; at least 140 million solar-type stars in the Milky Way are likely to have experienced a similar one. In light of these results, we predict that the upcoming Vera Rubin telescope will reveal that distant and retrograde TNOs are relatively common.
001031511 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001031511 536__ $$0G:(GEPRIS)450107816$$aDFG project G:(GEPRIS)450107816 - Eigenschaften des äußeren Sonnensystems als Folge eines stellaren Vorbeiflugs (450107816)$$c450107816$$x1
001031511 7001_ $$0P:(DE-Juel1)184730$$aGovind, Amith$$b1$$ufzj
001031511 7001_ $$0P:(DE-HGF)0$$aZwart, Simon Portegies$$b2
001031511 773__ $$0PERI:(DE-600)2879712-7$$a10.1038/s41550-024-02349-x$$p1380–1386$$tNature astronomy$$v8$$x2397-3366$$y2024
001031511 8564_ $$uhttps://juser.fz-juelich.de/record/1031511/files/s41550-024-02349-x.pdf$$yOpenAccess
001031511 8767_ $$d2024-11-27$$eHybrid-OA$$jPublish and Read
001031511 909CO $$ooai:juser.fz-juelich.de:1031511$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
001031511 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177668$$aForschungszentrum Jülich$$b0$$kFZJ
001031511 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184730$$aForschungszentrum Jülich$$b1$$kFZJ
001031511 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001031511 9141_ $$y2024
001031511 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001031511 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001031511 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001031511 915pc $$0PC:(DE-HGF)0114$$2APC$$aGerman academic consortium, administered by Max Planck Digital Library: Springer Nature 2021
001031511 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-27
001031511 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001031511 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-27
001031511 915__ $$0StatID:(DE-HGF)3003$$2StatID$$aDEAL Nature$$d2023-10-27$$wger
001031511 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001031511 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT ASTRON : 2022$$d2024-12-28
001031511 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-28
001031511 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-28
001031511 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-28
001031511 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-28
001031511 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-28
001031511 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNAT ASTRON : 2022$$d2024-12-28
001031511 920__ $$lyes
001031511 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001031511 9801_ $$aFullTexts
001031511 980__ $$ajournal
001031511 980__ $$aVDB
001031511 980__ $$aUNRESTRICTED
001031511 980__ $$aI:(DE-Juel1)JSC-20090406
001031511 980__ $$aAPC