001     1031512
005     20250203133210.0
024 7 _ |a 10.3847/2041-8213/ad63a6
|2 doi
024 7 _ |a 10.34734/FZJ-2024-05713
|2 datacite_doi
024 7 _ |a WOS:001304242800001
|2 WOS
037 _ _ |a FZJ-2024-05713
082 _ _ |a 520
100 1 _ |a Pfalzner, Susanne
|0 P:(DE-Juel1)177668
|b 0
|e Corresponding author
245 _ _ |a Irregular Moons Possibly Injected from the Outer Solar System by a Stellar Flyby
260 _ _ |a London
|c 2024
|b Institute of Physics Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1729061880_16964
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The irregular moons orbit the giant planets on distant, inclined, and eccentric trajectories, in sharp contrast with the coplanar and quasicircular orbits of the regular moons. The origin of these irregular moons is still an open question, but these moons have a lot in common with the objects beyond Neptune (trans-Neptunian objects—TNOs), suggestive of a common origin. Here, we show that the close flyby of a star may be the connecting element. A stellar flyby can simultaneously reproduce the complex TNO dynamics quantitatively while explaining the origin of the irregular moons and the color distributions of both populations. This flyby would have catapulted 7.2% of the original TNO population into the region of the planets, many on retrograde orbits. Most injected TNOs would have been subsequently ejected from the solar system (85%). However, a considerable fraction would have had the potential to be captured by the planets. The exclusively distant origin of the injected TNOs may also explain the lack of very red irregular moons.
536 _ _ |a 5121 - Supercomputing & Big Data Facilities (POF4-512)
|0 G:(DE-HGF)POF4-5121
|c POF4-512
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Govind, Amith
|0 P:(DE-Juel1)184730
|b 1
700 1 _ |a Wagner, Frank
|0 P:(DE-Juel1)184382
|b 2
773 _ _ |a 10.3847/2041-8213/ad63a6
|g Vol. 972, no. 2, p. L21 -
|0 PERI:(DE-600)2006858-X
|n 2
|p L21
|t The astrophysical journal / Part 2
|v 972
|y 2024
|x 2041-8205
856 4 _ |u https://juser.fz-juelich.de/record/1031512/files/FZJ-2024-05713_8253242.pdf
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/1031512/files/FZJ-2024-05713_8253242.gif?subformat=icon
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/1031512/files/FZJ-2024-05713_8253242.jpg?subformat=icon-1440
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/1031512/files/FZJ-2024-05713_8253242.jpg?subformat=icon-180
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/1031512/files/FZJ-2024-05713_8253242.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1031512/files/Pfalzner_2024_ApJL.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1031512/files/Pfalzner_2024_ApJL.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1031512/files/Pfalzner_2024_ApJL.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1031512/files/Pfalzner_2024_ApJL.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1031512/files/Pfalzner_2024_ApJL.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1031512
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)177668
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)184730
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)184382
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-512
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Supercomputing & Big Data Infrastructures
|9 G:(DE-HGF)POF4-5121
|x 0
914 1 _ |y 2024
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2022-06-29T16:06:06Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-22
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-22
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-22
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-04-03T10:32:33Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-04-03T10:32:33Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review, Anonymous peer review, Double anonymous peer review
|d 2024-04-03T10:32:33Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-05
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ASTROPHYS J LETT : 2022
|d 2024-12-05
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ASTROPHYS J LETT : 2022
|d 2024-12-05
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21