Hauptseite > Publikationsdatenbank > Distributed hybrid quantum-classical performance prediction for hyperparameter optimization > print |
001 | 1031521 | ||
005 | 20250203133210.0 | ||
024 | 7 | _ | |a 10.1007/s42484-024-00198-5 |2 doi |
024 | 7 | _ | |a 2524-4906 |2 ISSN |
024 | 7 | _ | |a 2524-4914 |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2024-05716 |2 datacite_doi |
024 | 7 | _ | |a WOS:001312144200001 |2 WOS |
037 | _ | _ | |a FZJ-2024-05716 |
041 | _ | _ | |a English |
082 | _ | _ | |a 050 |
100 | 1 | _ | |a Wulff, Eric |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a Distributed hybrid quantum-classical performance prediction for hyperparameter optimization |
260 | _ | _ | |a [Cham] |c 2024 |b Springer Nature Switzerland AG |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1730795673_29934 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Hyperparameter optimization (HPO) of neural networks is a computationally expensive procedure, which requires a large number of different model configurations to be trained. To reduce such costs, this work presents a distributed, hybrid workflow, that runs the training of the neural networks on multiple graphics processing units (GPUs) on a classical supercomputer, while predicting the configurations’ performance with quantum-trained support vector regression (QT-SVR) on a quantum annealer (QA). The workflow is shown to run on up to 50 GPUs and a QA at the same time, completely automating the communication between the classical and the quantum systems. The approach is evaluated extensively on several benchmarking datasets from the computer vision (CV), high-energy physics (HEP), and natural language processing (NLP) domains. Empirical results show that resource costs for performing HPO can be reduced by up to 9% when using the hybrid workflow with performance prediction, compared to using a plain HPO algorithm without performance prediction. Additionally, the workflow obtains similar and in some cases even better accuracy of the final hyperparameter configuration, when combining multiple heuristically obtained predictions from the QA, compared to using just a single classically obtained prediction. The results highlight the potential of hybrid quantum-classical machine learning algorithms. The workflow code is made available open-source to foster adoption in the community. |
536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 0 |
536 | _ | _ | |a RAISE - Research on AI- and Simulation-Based Engineering at Exascale (951733) |0 G:(EU-Grant)951733 |c 951733 |f H2020-INFRAEDI-2019-1 |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Garcia Amboage, Juan Pablo |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Aach, Marcel |0 P:(DE-Juel1)180916 |b 2 |
700 | 1 | _ | |a Gislason, Thorsteinn Eli |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Ingolfsson, Thorsteinn Kristinn |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Ingolfsson, Tomas Kristinn |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Pasetto, Edoardo |0 P:(DE-Juel1)191143 |b 6 |
700 | 1 | _ | |a Delilbasic, Amer |0 P:(DE-Juel1)191384 |b 7 |
700 | 1 | _ | |a Riedel, Morris |0 P:(DE-Juel1)132239 |b 8 |
700 | 1 | _ | |a Sarma, Rakesh |0 P:(DE-Juel1)188513 |b 9 |
700 | 1 | _ | |a Girone, Maria |0 P:(DE-HGF)0 |b 10 |
700 | 1 | _ | |a Lintermann, Andreas |0 P:(DE-Juel1)165948 |b 11 |
773 | _ | _ | |a 10.1007/s42484-024-00198-5 |g Vol. 6, no. 2, p. 59 |0 PERI:(DE-600)2947496-6 |n 2 |p 59 |t Quantum machine intelligence |v 6 |y 2024 |x 2524-4906 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1031521/files/Wulff%20et%20al._2024_Distributed%20hybrid%20quantum-classical%20performance%20prediction%20for%20hyperparameter%20optimization%282%29.pdf |
856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1031521/files/Wulff%20et%20al._2024_Distributed%20hybrid%20quantum-classical%20performance%20prediction%20for%20hyperparameter%20optimization%282%29.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/1031521/files/Wulff%20et%20al._2024_Distributed%20hybrid%20quantum-classical%20performance%20prediction%20for%20hyperparameter%20optimization%282%29.jpg?subformat=icon-1440 |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1031521/files/Wulff%20et%20al._2024_Distributed%20hybrid%20quantum-classical%20performance%20prediction%20for%20hyperparameter%20optimization%282%29.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/1031521/files/Wulff%20et%20al._2024_Distributed%20hybrid%20quantum-classical%20performance%20prediction%20for%20hyperparameter%20optimization%282%29.jpg?subformat=icon-640 |
909 | C | O | |o oai:juser.fz-juelich.de:1031521 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)180916 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)191143 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)191384 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)132239 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)188513 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 11 |6 P:(DE-Juel1)165948 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DEAL Springer |0 StatID:(DE-HGF)3002 |2 StatID |d 2023-10-27 |w ger |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b QUANT MACH INTELL : 2022 |d 2024-12-05 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-05 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-05 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-05 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0112 |2 StatID |b Emerging Sources Citation Index |d 2024-12-05 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-05 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2024-12-05 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|