001     1031521
005     20250203133210.0
024 7 _ |a 10.1007/s42484-024-00198-5
|2 doi
024 7 _ |a 2524-4906
|2 ISSN
024 7 _ |a 2524-4914
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-05716
|2 datacite_doi
024 7 _ |a WOS:001312144200001
|2 WOS
037 _ _ |a FZJ-2024-05716
041 _ _ |a English
082 _ _ |a 050
100 1 _ |a Wulff, Eric
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Distributed hybrid quantum-classical performance prediction for hyperparameter optimization
260 _ _ |a [Cham]
|c 2024
|b Springer Nature Switzerland AG
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1730795673_29934
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Hyperparameter optimization (HPO) of neural networks is a computationally expensive procedure, which requires a large number of different model configurations to be trained. To reduce such costs, this work presents a distributed, hybrid workflow, that runs the training of the neural networks on multiple graphics processing units (GPUs) on a classical supercomputer, while predicting the configurations’ performance with quantum-trained support vector regression (QT-SVR) on a quantum annealer (QA). The workflow is shown to run on up to 50 GPUs and a QA at the same time, completely automating the communication between the classical and the quantum systems. The approach is evaluated extensively on several benchmarking datasets from the computer vision (CV), high-energy physics (HEP), and natural language processing (NLP) domains. Empirical results show that resource costs for performing HPO can be reduced by up to 9% when using the hybrid workflow with performance prediction, compared to using a plain HPO algorithm without performance prediction. Additionally, the workflow obtains similar and in some cases even better accuracy of the final hyperparameter configuration, when combining multiple heuristically obtained predictions from the QA, compared to using just a single classically obtained prediction. The results highlight the potential of hybrid quantum-classical machine learning algorithms. The workflow code is made available open-source to foster adoption in the community.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a RAISE - Research on AI- and Simulation-Based Engineering at Exascale (951733)
|0 G:(EU-Grant)951733
|c 951733
|f H2020-INFRAEDI-2019-1
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Garcia Amboage, Juan Pablo
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Aach, Marcel
|0 P:(DE-Juel1)180916
|b 2
700 1 _ |a Gislason, Thorsteinn Eli
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Ingolfsson, Thorsteinn Kristinn
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Ingolfsson, Tomas Kristinn
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Pasetto, Edoardo
|0 P:(DE-Juel1)191143
|b 6
700 1 _ |a Delilbasic, Amer
|0 P:(DE-Juel1)191384
|b 7
700 1 _ |a Riedel, Morris
|0 P:(DE-Juel1)132239
|b 8
700 1 _ |a Sarma, Rakesh
|0 P:(DE-Juel1)188513
|b 9
700 1 _ |a Girone, Maria
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Lintermann, Andreas
|0 P:(DE-Juel1)165948
|b 11
773 _ _ |a 10.1007/s42484-024-00198-5
|g Vol. 6, no. 2, p. 59
|0 PERI:(DE-600)2947496-6
|n 2
|p 59
|t Quantum machine intelligence
|v 6
|y 2024
|x 2524-4906
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1031521/files/Wulff%20et%20al._2024_Distributed%20hybrid%20quantum-classical%20performance%20prediction%20for%20hyperparameter%20optimization%282%29.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1031521/files/Wulff%20et%20al._2024_Distributed%20hybrid%20quantum-classical%20performance%20prediction%20for%20hyperparameter%20optimization%282%29.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1031521/files/Wulff%20et%20al._2024_Distributed%20hybrid%20quantum-classical%20performance%20prediction%20for%20hyperparameter%20optimization%282%29.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1031521/files/Wulff%20et%20al._2024_Distributed%20hybrid%20quantum-classical%20performance%20prediction%20for%20hyperparameter%20optimization%282%29.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1031521/files/Wulff%20et%20al._2024_Distributed%20hybrid%20quantum-classical%20performance%20prediction%20for%20hyperparameter%20optimization%282%29.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1031521
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)180916
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)191143
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)191384
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)132239
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)188513
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)165948
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2024
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2023-10-27
|w ger
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b QUANT MACH INTELL : 2022
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-05
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-05
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-05
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21