001031528 001__ 1031528
001031528 005__ 20241107210039.0
001031528 037__ $$aFZJ-2024-05723
001031528 041__ $$aEnglish
001031528 1001_ $$0P:(DE-Juel1)165746$$aDickscheid, Timo$$b0$$ufzj
001031528 1112_ $$aThe Julich-Brain Atlas at EBRAINS - Introduction, Concepts and Hands-on Sessions$$conline$$d2024-06-19 - 2024-06-19$$wGermany
001031528 245__ $$aUsing the multilevel human brain atlas in reproducible workflows with siibra-python
001031528 260__ $$c2024
001031528 3367_ $$2DRIVER$$alecture
001031528 3367_ $$031$$2EndNote$$aGeneric
001031528 3367_ $$2BibTeX$$aMISC
001031528 3367_ $$0PUB:(DE-HGF)17$$2PUB:(DE-HGF)$$aLecture$$blecture$$mlecture$$s1730963230_18998$$xOutreach
001031528 3367_ $$2ORCID$$aLECTURE_SPEECH
001031528 3367_ $$2DataCite$$aText
001031528 520__ $$a<b>Using the multilevel human brain atlas in reproducible workflows with siibra-python</b><br>Timo Dickscheid<br><br>siibra is a software tool suite that allows to access the multilevel human brain atlas by providing access to reference templates at different spatial scales, complementary brain parcellations maps, and multimodal regional data from different sources which is linked to brain anatomy at different spatial scales. Besides interactive exploration in the 3D web viewer siibra-explorer, the framework can be leveraged for scripting, reproducible workflows and application development using the siibra-python programming library.This session will introduce the core concepts of siibra-python and demonstrate a range of typical programming patterns to use the atlas. It will cover practical coding exercises demonstrating how to fetch brain region maps, access high-resolution microscopy data including the BigBrain dataset, and extract multimodal regional features such as cortical thicknesses, cell and neurotransmitter densities, gene expressions, and connectivity data. Participants will gain first insight of the features of siibra-python to enhance their ability to perform advanced neuroimaging analyses with data coming from different modalities and resolutions.
001031528 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001031528 536__ $$0G:(DE-HGF)POF4-5254$$a5254 - Neuroscientific Data Analytics and AI (POF4-525)$$cPOF4-525$$fPOF IV$$x1
001031528 536__ $$0G:(EU-Grant)101147319$$aEBRAINS 2.0 - EBRAINS 2.0: A Research Infrastructure to Advance Neuroscience and Brain Health (101147319)$$c101147319$$fHORIZON-INFRA-2022-SERV-B-01$$x2
001031528 536__ $$0G:(DE-HGF)InterLabs-0015$$aHIBALL - Helmholtz International BigBrain Analytics and Learning Laboratory (HIBALL) (InterLabs-0015)$$cInterLabs-0015$$x3
001031528 536__ $$0G:(DE-Juel-1)E.40401.62$$aHelmholtz AI - Helmholtz Artificial Intelligence Coordination Unit – Local Unit FZJ (E.40401.62)$$cE.40401.62$$x4
001031528 8564_ $$uhttps://go.fzj.de/Julich-Brain-EBRAINS-School
001031528 909CO $$ooai:juser.fz-juelich.de:1031528$$popenaire$$pVDB$$pec_fundedresources
001031528 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165746$$aForschungszentrum Jülich$$b0$$kFZJ
001031528 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001031528 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5254$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x1
001031528 9141_ $$y2024
001031528 920__ $$lyes
001031528 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x0
001031528 980__ $$alecture
001031528 980__ $$aVDB
001031528 980__ $$aI:(DE-Juel1)INM-1-20090406
001031528 980__ $$aUNRESTRICTED