001031556 001__ 1031556
001031556 005__ 20250203133210.0
001031556 0247_ $$2doi$$a10.1103/PhysRevMaterials.8.084204
001031556 0247_ $$2ISSN$$a2475-9953
001031556 0247_ $$2ISSN$$a2476-0455
001031556 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-05736
001031556 0247_ $$2WOS$$aWOS:001302143800001
001031556 037__ $$aFZJ-2024-05736
001031556 082__ $$a530
001031556 1001_ $$0P:(DE-HGF)0$$aZsurka, Eduárd$$b0$$eCorresponding author
001031556 245__ $$aLow-energy modeling of three-dimensional topological insulator nanostructures
001031556 260__ $$aCollege Park, MD$$bAPS$$c2024
001031556 3367_ $$2DRIVER$$aarticle
001031556 3367_ $$2DataCite$$aOutput Types/Journal article
001031556 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1727864984_29585
001031556 3367_ $$2BibTeX$$aARTICLE
001031556 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001031556 3367_ $$00$$2EndNote$$aJournal Article
001031556 520__ $$aWe develop an accurate nanoelectronic modeling approach for realistic three-dimensional topological insulator nanostructures and investigate their low-energy surface-state spectrum. Starting from the commonly considered four-band k·p bulk model Hamiltonian for the Bi2⁢Se3 family of topological insulators, we derive new parameter sets for Bi2⁢Se3, Bi2⁢Te3, and Sb2⁢Te3. We consider a fitting strategy applied to ab initio band structures around the Γ point that ensures a quantitatively accurate description of the low-energy bulk and surface states while avoiding the appearance of unphysical low-energy states at higher momenta, something that is not guaranteed by the commonly considered perturbative approach. We analyze the effects that arise in the low-energy spectrum of topological surface states due to band anisotropy and electron-hole asymmetry, yielding Dirac surface states that naturally localize on different side facets. In the thin-film limit, when surface states hybridize through the bulk, we resort to a thin-film model and derive thickness-dependent model parameters from ab initio calculations that show good agreement with experimentally resolved band structures, unlike the bulk model that neglects relevant many-body effects in this regime. Our versatile modeling approach offers a reliable starting point for accurate simulations of realistic topological material-based nanoelectronic devices.
001031556 536__ $$0G:(DE-HGF)POF4-5222$$a5222 - Exploratory Qubits (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001031556 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001031556 7001_ $$0P:(DE-Juel1)184562$$aWang, Cheng$$b1$$ufzj
001031556 7001_ $$0P:(DE-HGF)0$$aLegendre, Julian$$b2
001031556 7001_ $$0P:(DE-HGF)0$$aDi Miceli, Daniele$$b3
001031556 7001_ $$0P:(DE-HGF)0$$aSerra, Llorenç$$b4
001031556 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b5
001031556 7001_ $$0P:(DE-HGF)0$$aSchmidt, Thomas L.$$b6
001031556 7001_ $$0P:(DE-Juel1)157882$$aRüssmann, Philipp$$b7$$ufzj
001031556 7001_ $$0P:(DE-Juel1)180184$$aMoors, Kristof$$b8$$eCorresponding author
001031556 773__ $$0PERI:(DE-600)2898355-5$$a10.1103/PhysRevMaterials.8.084204$$gVol. 8, no. 8, p. 084204$$n8$$p084204$$tPhysical review materials$$v8$$x2475-9953$$y2024
001031556 8564_ $$uhttps://juser.fz-juelich.de/record/1031556/files/PhysRevMaterials.8.084204.pdf$$yOpenAccess
001031556 8564_ $$uhttps://juser.fz-juelich.de/record/1031556/files/PhysRevMaterials.8.084204.gif?subformat=icon$$xicon$$yOpenAccess
001031556 8564_ $$uhttps://juser.fz-juelich.de/record/1031556/files/PhysRevMaterials.8.084204.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001031556 8564_ $$uhttps://juser.fz-juelich.de/record/1031556/files/PhysRevMaterials.8.084204.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001031556 8564_ $$uhttps://juser.fz-juelich.de/record/1031556/files/PhysRevMaterials.8.084204.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001031556 909CO $$ooai:juser.fz-juelich.de:1031556$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001031556 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b0$$kFZJ
001031556 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184562$$aForschungszentrum Jülich$$b1$$kFZJ
001031556 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b5$$kFZJ
001031556 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157882$$aForschungszentrum Jülich$$b7$$kFZJ
001031556 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180184$$aForschungszentrum Jülich$$b8$$kFZJ
001031556 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5222$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001031556 9141_ $$y2024
001031556 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-29
001031556 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
001031556 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-29
001031556 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001031556 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV MATER : 2022$$d2024-12-05
001031556 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-05
001031556 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-05
001031556 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-05
001031556 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-05
001031556 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-05
001031556 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-05
001031556 920__ $$lyes
001031556 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
001031556 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
001031556 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x2
001031556 980__ $$ajournal
001031556 980__ $$aVDB
001031556 980__ $$aUNRESTRICTED
001031556 980__ $$aI:(DE-Juel1)PGI-9-20110106
001031556 980__ $$aI:(DE-82)080009_20140620
001031556 980__ $$aI:(DE-Juel1)PGI-1-20110106
001031556 9801_ $$aFullTexts