| Home > Publications database > Low-energy modeling of three-dimensional topological insulator nanostructures > print |
| 001 | 1031556 | ||
| 005 | 20250203133210.0 | ||
| 024 | 7 | _ | |a 10.1103/PhysRevMaterials.8.084204 |2 doi |
| 024 | 7 | _ | |a 2475-9953 |2 ISSN |
| 024 | 7 | _ | |a 2476-0455 |2 ISSN |
| 024 | 7 | _ | |a 10.34734/FZJ-2024-05736 |2 datacite_doi |
| 024 | 7 | _ | |a WOS:001302143800001 |2 WOS |
| 037 | _ | _ | |a FZJ-2024-05736 |
| 082 | _ | _ | |a 530 |
| 100 | 1 | _ | |a Zsurka, Eduárd |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
| 245 | _ | _ | |a Low-energy modeling of three-dimensional topological insulator nanostructures |
| 260 | _ | _ | |a College Park, MD |c 2024 |b APS |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1727864984_29585 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a We develop an accurate nanoelectronic modeling approach for realistic three-dimensional topological insulator nanostructures and investigate their low-energy surface-state spectrum. Starting from the commonly considered four-band k·p bulk model Hamiltonian for the Bi2Se3 family of topological insulators, we derive new parameter sets for Bi2Se3, Bi2Te3, and Sb2Te3. We consider a fitting strategy applied to ab initio band structures around the Γ point that ensures a quantitatively accurate description of the low-energy bulk and surface states while avoiding the appearance of unphysical low-energy states at higher momenta, something that is not guaranteed by the commonly considered perturbative approach. We analyze the effects that arise in the low-energy spectrum of topological surface states due to band anisotropy and electron-hole asymmetry, yielding Dirac surface states that naturally localize on different side facets. In the thin-film limit, when surface states hybridize through the bulk, we resort to a thin-film model and derive thickness-dependent model parameters from ab initio calculations that show good agreement with experimentally resolved band structures, unlike the bulk model that neglects relevant many-body effects in this regime. Our versatile modeling approach offers a reliable starting point for accurate simulations of realistic topological material-based nanoelectronic devices. |
| 536 | _ | _ | |a 5222 - Exploratory Qubits (POF4-522) |0 G:(DE-HGF)POF4-5222 |c POF4-522 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Wang, Cheng |0 P:(DE-Juel1)184562 |b 1 |u fzj |
| 700 | 1 | _ | |a Legendre, Julian |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Di Miceli, Daniele |0 P:(DE-HGF)0 |b 3 |
| 700 | 1 | _ | |a Serra, Llorenç |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a Grützmacher, Detlev |0 P:(DE-Juel1)125588 |b 5 |
| 700 | 1 | _ | |a Schmidt, Thomas L. |0 P:(DE-HGF)0 |b 6 |
| 700 | 1 | _ | |a Rüssmann, Philipp |0 P:(DE-Juel1)157882 |b 7 |u fzj |
| 700 | 1 | _ | |a Moors, Kristof |0 P:(DE-Juel1)180184 |b 8 |e Corresponding author |
| 773 | _ | _ | |a 10.1103/PhysRevMaterials.8.084204 |g Vol. 8, no. 8, p. 084204 |0 PERI:(DE-600)2898355-5 |n 8 |p 084204 |t Physical review materials |v 8 |y 2024 |x 2475-9953 |
| 856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1031556/files/PhysRevMaterials.8.084204.pdf |
| 856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1031556/files/PhysRevMaterials.8.084204.gif?subformat=icon |
| 856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/1031556/files/PhysRevMaterials.8.084204.jpg?subformat=icon-1440 |
| 856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1031556/files/PhysRevMaterials.8.084204.jpg?subformat=icon-180 |
| 856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/1031556/files/PhysRevMaterials.8.084204.jpg?subformat=icon-640 |
| 909 | C | O | |o oai:juser.fz-juelich.de:1031556 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)184562 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)125588 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)157882 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)180184 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-522 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Computing |9 G:(DE-HGF)POF4-5222 |x 0 |
| 914 | 1 | _ | |y 2024 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-29 |
| 915 | _ | _ | |a American Physical Society Transfer of Copyright Agreement |0 LIC:(DE-HGF)APS-112012 |2 HGFVOC |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-29 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS REV MATER : 2022 |d 2024-12-05 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-05 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-05 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-05 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-05 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-05 |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2024-12-05 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)PGI-9-20110106 |k PGI-9 |l Halbleiter-Nanoelektronik |x 0 |
| 920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 1 |
| 920 | 1 | _ | |0 I:(DE-Juel1)PGI-1-20110106 |k PGI-1 |l Quanten-Theorie der Materialien |x 2 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)PGI-9-20110106 |
| 980 | _ | _ | |a I:(DE-82)080009_20140620 |
| 980 | _ | _ | |a I:(DE-Juel1)PGI-1-20110106 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|