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Avoiding Replicates in Biocatalysis Experiments: Machine
Learning for Enzyme Cascade Optimization
Regine Siedentop,[a] Maximilian Siska,[b] Johanna Hermes,[a] Stephan Lütz,[a] Eric von
Lieres,*[b, c] and Katrin Rosenthal*[d]

The optimization of enzyme cascades is a complex and resource-
demanding task due to the multitude of parameters and syn-
ergistic effects involved. Machine learning can support the
identification of optimal reaction conditions, for example, in the
case of Bayesian optimization (BO), by proposing new experi-
ments based on Gaussian process regression (GPR) and expected
improvement (EI). Here, in this research BO is used to opti-
mize the concentrations of the reaction components of an
enzyme cascade. The productivity-cost-ratio is chosen as the
optimization objective in order to achieve the highest possible
productivity, which was normalized to the costs of the mate-
rials used to prevent convergence to ever-increasing enzyme

concentrations. To reduce the experimental effort, contrary to
common practice in biological experiments, replicates were not
used; instead, the algorithm’s proposed experiments and inher-
ent uncertainty quantification were relied upon. This approach
balances parameter space exploration and exploitation, which
is critical for the efficient and effective identification of opti-
mal reaction conditions. At the optimized reaction conditions
identified in this study, the productivity-cost ratio is doubled
to 38.6 mmol L−1 h−1

€
−1 compared to a reference experiment.

The parameter optimization required only 52 experiments while
being robust to outlying experimental results.

1. Introduction

Biocatalysis is playing an increasingly important role in the syn-
thesis of complex molecules, which is further driven by the
availability of new enzymes and their targeted development.[1–4]

The combination of two or more enzymes in one pot, called
an enzyme cascade, expands the possibilities for the syn-
thesis of complex molecules.[5–8] The development of these
in vitro enzyme cascades poses the challenge of a con-
tinuous cofactor regeneration, of the energy supply in the
form of adenosine-5′-triphosphate (ATP).[9,10] Therefore, several
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enzymatic ATP regenerating systems were established, such
as polyphosphate kinases, acetate kinase (ACK), or pyruvate
kinase.[11–14] ATP regeneration by ACK uses acetyl phosphate as
phosphate donor, which can be synthesized in situ by oxidation
and decarboxylation of pyruvate and phosphate by pyruvate oxi-
dase (POX).[15–17] Hence, the stability and economic drawbacks of
acetyl phosphate as phosphate donor are bypassed.[18] Further-
more, the redox reaction of POX can be coupled to electrochem-
ical methods.[18,19] Beyond continuous cofactor regeneration, the
performance of in vitro enzyme cascades is influenced by many
parameters, including the composition and concentration of
reaction components, pH, and temperature. For a large-scale
application, the ecology of the reaction also plays a pivotal
role.[2] Identifying the optimal reaction conditions is a complex
task and utilizing computational methods can streamline the
optimization process.[20,21]

Bayesian optimization (BO), also referred to as active learning
in the context of process optimization, is a class of machine-
learning algorithms that can be particularly useful for such multi-
dimensional and multi-objective optimization problems.[22–26] BO
is suitable for black-box systems, in which a detailed and mech-
anistic understanding of the reaction network is not required.[27]

Effects such as inhibitions or side-reactions have thus not to be
known for a comprehensive optimization. It involves a surro-
gate model such as Gaussian process regression (GPR) combined
with an acquisition function such as expected improvement (EI).
In this context, GPR predicts the relation between parameter
values such as concentrations or pH and key performance indi-
cators (KPI) such as yield or productivity. Most importantly, it
also predicts the uncertainty of these KPIs.[27,28] The GPR model
is sequentially refined as more experimental data become avail-
able. In each successive round, new measurement points are
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proposed, guided by the prediction of the highest EI of a KPI, as
determined by the GPR model. The acquisition function quanti-
fies a trade-off between parameter regions with expected opti-
mal values (exploitation) and regions with high uncertainty of
the GPR prediction due to sparse data coverage (exploration).[29]

During BO, synergistic effects between all components of the
whole system are simultaneously responded to by concurrently
adjusting all parameters and not only one factor at a time.[30]

Nonetheless, the optimum is identified with a defined parame-
ter set for the given objective and within a predefined window
of operation. BO is already used in many disciplines and has
attracted increasing attention in the biocatalytic field in recent
years.[27,31–37]

In this study, we used the ATP regeneration system con-
sisting of ACK and POX for the phosphorylation of mevalonate
(MVA) to mevalonate phosphate (MVAP) catalyzed by meval-
onate kinase (MVK), which are important intermediates in the
isoprenoid pathway for the synthesis of terpenes.[38–41] In in vitro
approaches, ATP regeneration has been shown to be a criti-
cal factor in the performance of product synthesis, as indicated
in mechanistic modeling studies.[41–44] In a previous study, we
successfully coupled the ATP regeneration to electrochemistry;
however, a more holistic optimization of the compound con-
centrations would be beneficial for higher yields and cofactor
utilization.[18] Here, we use productivity of the MVK-catalyzed
reaction as optimization objective for the process optimization
and a combined optimization of productivity and costs intro-
duced as productivity-cost ratio (Pr/€). This approach was chosen
in order to increase productivity while at the same time tak-
ing costs into account and avoiding convergence towards ever
higher enzyme concentrations. In addition, we monitored other
KPIs, that is, conversion, space-time-yield (STY), enzyme activity,
and cost of the reaction components.

The optimization process utilized GPR as a surrogate model
and EI as the acquisition function. This strategic approach
involves proposing sampling locations that carefully balance the
exploration of under-investigated regions within the parameter
space, characterized by low sampling density, and exploiting the
most promising areas by proposing additional experiments close
to the best-performing measurements. Since biological exper-
iments can be complicated, replicate measurements are often
performed to ensure experiment performance, significance, and
reproducibility. In contrast to this common practice in biocat-
alytic experimentation, we decided against replicating individual
measurements. This decision was made in favor of increasing
the number of unique measurements and therefore maximiz-
ing the information derived from the experiments. By doing so,
we aim to enhance our understanding of the intricate functional
relationship between the studied parameters, which is critical to
efficiently and effectively identifying the region of optimality.

While traditional point-wise methods do require replicates
to assess the uncertainty of the final optimal value, the applied
Gaussian process inherently estimates not only the mean value
but also the standard deviation of the approximated functional
relationship at any point of the design space. This estimation is
based not only on a single measurement but considers exper-
imental data in a neighborhood of the optimal point. In the

Table 1. Parameter space with studied parameters and their ranges. ACK:
acetate kinase; ADP: adenosine-5′-diphosphate; MVA: mevalonate; MVK:
mevalonate kinase; POX: pyruvate oxidase.

Compound Concentration Parameter Range

MVA 10–30 mM

ADP 1–30 mM

Phosphate 10–200 mM

Pyruvate Respective to c(MVA) + 5 mM

POX 0.1–10 U mL−1

ACK 0.1–10 U mL−1

MVK 10–200 mg L−1

exploration phase of the BO algorithm, many points are dis-
tributed closely around the optimal point rather than repeating
a single measurement. Hence, this method effectively allows to
avoid replicates also in the presence of technical errors. Kreyling
et al. have also found that it is generally more informative to
distribute a given number of measurements in a region around
the optimum rather than perform replicates at fewer points.[45]

Experimental replicates can be useful for calibrating mechanis-
tic error models.[46] However, such error models are not trivial to
establish for the studied non-linear processes and are out of the
scope of publication.

2. Results and Discussion

2.1. ATP Regeneration by Pyruvate Oxidase and Acetate
Kinase

For the optimization process, enzyme, and substrate concentra-
tions (MVA, ADP, phosphate, pyruvate, POX, ACK, and MVK con-
centrations) were chosen as adjustable parameters to achieve
the maximum performance of the enzyme cascade (Figure 1).
Temperature and pH were not included as parameters to keep
the design space narrow and the complexity low. Concentra-
tions were chosen to define the parameter space in which the
optimum is expected and sought.

As substrate for the main product MVAP, MVA is added with
initial concentration ranges between 10 to 30 mM (Table 1). MVA
is an expensive substrate, that is why the concentration range
was kept narrow. In later experiments (Bayesian optimization),
the concentration of MVA was kept constant and was excluded
for the calculation of the productivity-cost ratio, as it would
have dominated the cost-factor (>98%). Pyruvate is added in
slight excess to MVA, while ADP is added in concentrations of
1 mM for mandatory ADP regeneration up to the stoichiometric
amount of MVA. Phosphate has a wider range of 10 to 200 mM
because on the one hand, it may exhibit inhibitory properties; on
the other hand, at higher concentrations, it has the potential to
shift the reaction equilibrium favorably towards the product side.
According to previous knowledge available for MVK, an upper
limit of 200 mg L−1 was chosen.[18,47] For ACK, the homologues
from Acholeplasma laidlawii (AlACK), Clostridium acetobutylicum
(CaAcK), Shewanella (SACK), Escherichia coli (EcACK) were tested.
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Figure 1. ATP regeneration by pyruvate oxidase and acetate kinase for the phosphorylation of mevalonate by mevalonate kinase. The concentrations of
marked compounds were varied to optimize productivity and productivity-cost ratio of the enzyme cascade. Yellow-marked compounds were the focus of
the proceeded optimization process. ACK: acetate kinase, MVA: mevalonate, MVAP: mevalonate phosphate, MVK: mevalonate kinase, POX: pyruvate oxidase.

SACK could not be successfully expressed. The other three ACKs
showed similar reaction rates in the enzyme cascade (Figure S2).
As slightly higher product concentrations could be detected with
the CaACK after 24 h, this enzyme was selected for the further
experiments. For reasons of clarity, the enzyme is abbreviated as
ACK in the following. For POX, it turned out that POX is difficult
to express and results in low expression levels.[48] Therefore, a
commercially available enzyme of Aerococcus viridans was used.
Hence, POX was the cost-driving factor compared to the over-
all costs of the enzyme cascade (Table S3). For both enzymes, a
more comprehensive range of 0.1 to 10 U mL−1 was chosen as
less experience exists for these enzymes.

2.2. Initial Screening of the Parameter Space

The seven selected parameters create a high-dimensional
parameter space in which the optimal composition of the
enzyme cascade needs to be found. To assess the individual
impact of each parameter on productivity, we initially employed
a one-factor-at-a-time (OFAT) approach, conducting experiments
at the boundary values for each parameter. Logarithmically cen-
tered parameter values were selected as basis for the OFAT
experiments, which aligns with the log-transformation of GPR
input data as outlined in the section on GPR modeling. A ref-
erence experiment was also performed using the experimental
conditions of the logarithmically centered parameter values.

In addition, based on the initial OFAT experiments, an addi-
tional round of experiments with increased concentrations of
pyruvate, phosphate, or POX, and with varied concentrations of
ADP were performed to validate the bounds of the parameter
space. The experimental conditions and results of the two-
rounds of OFAT experiments are shown in Table 2. As mentioned
before, all experiments were conducted without replicates. In
addition to productivity, conversion, STY, enzyme activity, and
costs (Table S3) of the reaction components were calculated.

Increased concentrations of enzymes led to increased pro-
ductivities (Experiments A1.8, A1.10, A1.12, and A2.8) and especially
the increased concentration of POX to 20 U mL−1 resulted in the
highest productivity of 60.2 mmol L−1 h−1 (Experiment A2.8). Ele-
vated concentrations of pyruvate positively affect productivity,
while ADP has less influence (Experiments A2.2 and A1.3, A1.4,

A2.6, A2.7). Varying concentrations of MVA have only marginal
influence on productivity and since it is an expensive substrate,
it was excluded from further variations.

Other KPIs such as conversion, STY or activity have shown
other trends compared to the productivity. The conversion
was above 80% in all initial experiments, except when using
0.1 U mL−1 POX (Experiment A1.7). Using this condition, all KPIs
except for the productivity-cost ratio are the lowest. Using
higher amounts of POX has a positive influence on activity
and productivity but increases the costs, which in turn lowers
the productivity-cost ratio (Experiments A1.8 and A2.8). The
productivity-cost ratio was enhanced using increased amounts
of ACK, phosphate, pyruvate, while maintaining medium
amounts of ADP (Experiments A1.6, A1.9, A1.10, A2.2, A2.6, and
A2.7). The STY varied between 1.6 g L−1 d−1 and 5.1 g L−1 d−1

(Experiments A1.7 and A2.2), and activity remained between
0.5 U mg−1 and 15.0 U mg−1 (Experiments A1.7 and A1.11). The
most promising conditions resulting in the highest productivity
values were combined in a third-round of experiments to gain
further information about the reaction (Table 3).

Overall, the combination of the conditions resulted in
increased productivities. Especially high concentrations of
phosphate, POX and ACK led to the highest productivity
with 77.2 mmol L−1 h−1 (Experiment A3.3). However, increased
amounts of POX escalate the costs of the process and ulti-
mately lower the productivity-cost ratio. Conversions remained
between 83% and 88% (Experiments A3.4 and A3.6) and STY
and activity also remained in a similar range as the previous
experiments with 2.6 g L−1 d−1 to 3.9 g L−1 d−1 (Experiments A3.6
and A3.5) and 2.7 U mg−1 to 14.5 U mg−1 (Experiments A3.2, A3.3,
and A3.4), respectively. Still, higher productivities are expected
and the results were used to narrow the parameter space and
to initialize BO for identifying the optimal conditions.

To narrow the parameter space for further optimization,
the impact of each design parameter was analyzed. For this
purpose, productivity was plotted as a function of concen-
tration parameters (Figure 2). POX has the highest influence
on productivity, while phosphate and MVK show a reduced
impact at the upper concentration range. Varying MVA and ADP
concentrations change the productivity marginally in the cho-
sen concentration ranges. Therefore, the parameter space was
adapted to these findings by keeping MVA and ADP concen-
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Table 2. Results of the two-rounds of OFAT experiments. If not mentioned otherwise, concentrations were 44.7 mM PO4
3− , c(MVA)+5 mM pyruvate, 5.5 mM

ADP, 17.3 mM MVA, 80 mg L−1 MVK, 1 U mL−1 ACK und 1 U mL−1 POX in Tris-based buffer (100 mM Tris-HCl, 150 mM NaCl, 10% glycerol, 20 mM of MgCl2,
pH 7.5; with additionally added 0.1 mM FAD, 0.1 mM ThPP, 20 U mL−1 catalase, 3 mM Na3VO4, 0.043 mM NADP+ , 0.43 mM CoA, 170 mM glucose, 200 mM
NaOAc, and 20 mM MgCl2). Assays were performed in singlicates at 30 °C and 30 rpm using a multirotator. MVA was not included in the cost calculation,
as it accounts for >98% of the costs. Conversions were determined after 24 h. Results were colored for each round of experiments according to their value
(lowest - white, higher - darker). STY: space-time-yield; Pr/€: productivity-cost ratio.

Experiment Parameter Concentration Conversion
[%]

STY
[g L−1 d−1]

Activity
[U mg−1]

Productivity
[mmol L−1 h−1]

Costs
[€]

Pr/€
[mmol L−1 h−1

€
−1]

reference – – 89 2.9 3.2 18.7 0.97 19.2

A1.1 MVA 10 mM 89 1.7 3.6 16.2 0.97 16.6

A1.2 MVA 30 mM 66 4.4 2.3 16.0 0.97 16.4

A1.3 ADP 1 mM 90 3.0 4.0 18.8 0.96 19.5

A1.4 ADP 30 mM 59 3.2 2.3 17.6 1.01 17.3

A1.5 PO4
3− 10 mM 60 2.1 1.9 11.6 0.97 11.9

A1.6 PO4
3− 200 mM 91 3.1 5.0 22.7 0.97 23.4

A1.7 POX 0.1 U mL−1 29 1.6 0.5 4.7 0.31 15.5

A1.8 POX 10 U mL−1 89 2.9 7.7 32.4 7.62 4.3

A1.9 ACK 0.1 U mL−1 89 3.0 3.3 22.6 0.97 23.3

A1.10 ACK 10 U mL−1 86 3.2 3.1 25.1 0.97 25.8

A1.11 MVK 10 mg L−1 90 3.1 15.0 10.0 0.97 10.3

A1.12 MVK 200 mg L−1 88 3.0 1.6 19.6 0.97 20.1

A2.1 Dilution 1:1 84 2.2 3.2 8.8 0.60 14.8

A2.2 Pyruvate 100 mM 88 5.1 3.3 23.6 0.97 24.2

A2.3 PO4
3− 120 mM 88 2.9 4.3 19.7 0.97 20.3

A2.4 PO4
3− 300 mM 89 2.7 4.5 18.6 0.97 19.2

A2.5 PO4
3− 400 mM 89 4.1 3.5 21.2 0.97 21.8

A2.6 ADP 2.5 mM 88 3.5 3.7 23.1 0.97 23.9

A2.7 ADP 11 mM 89 4.0 3.0 23.1 0.98 23.5

A2.8 POX 20 U mL−1 88 3.6 10.1 60.2 15.00 4.0

Figure 2. Impact of concentration parameters on productivity.
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Table 3. Combinations of promising OFAT conditions. If not mentioned otherwise, concentrations were 44.7 mM PO4
3− , 22.3 mM pyruvate, 5.5 mM ADP,

17.3 mM MVA, 80 mg L−1 MVK, 1 U mL−1 ACK und 1 U mL−1 POX in Tris-based buffer (100 mM Tris-HCl, 150 mM NaCl, 10% glycerol, 20 mM of MgCl2, pH
7.5; with additionally added 0.1 mM FAD, 0.1 mM ThPP, 20 U mL−1 catalase, 3 mM Na3VO4, 0.043 mM NADP+ , 0.43 mM CoA, 170 mM glucose, 200 mM
NaOAc, and 20 mM MgCl2). Assays were performed in singlicates at 30 °C and 30 rpm in a multirotator. MVA was not included in the cost calculation, as
it accounts for >98% of the costs. Conversions were determined after 24 h. Results were colored for each round of experiments according to their value
(lowest - white, higher - darker). STY: space-time-yield; Pr/€: productivity-cost ratio.

Experiment Concentration Conversion
[%]

STY
[g L−1 d−1]

Activity
[U mg−1]

Productivity
[mmol L−1 h−1]

Costs
[€]

Pr/€
[mmol L−1 h−1

€
−1]

reference – 89 2.9 3.2 18.7 0.97 19.2

A3.1 200 mM PO4
3−

10 U mL−1 POX
88 3.8 6.3 45.1 7.62 5.9

A3.2 200 mM PO4
3−

10 U mL−1 POX
200 mg L−1 MVK

88 3.6 2.7 46.3 7.62 6.1

A3.3 200 mM PO4
3−

10 U mL−1 POX
10 U mL−1 ACK

88 3.4 14.5 77.2 7.62 10.1

A3.4 200 mg L−1 MVK
10 U mL−1 POX
10 U mL−1 ACK

83 3.7 2.7 37.8 7.62 5.0

A3.5 200 mM PO4
3−

10 U mL−1 POX
10 U mL−1 ACK
200 mg L−1 MVK

85 3.9 2.8 42.3 7.62 5.6

A3.6 200 mM PO4
3−

200 mM pyruvate
10 U mL−1 POX
10 U mL−1 ACK
200 mg L−1 MVK

88 2.6 3.9 44.2 7.62 5.8

Table 4. Adapted parameter space for BO.

Compound Tested Concentrations

MVA Constant at 17.3 mM

ADP Constant at 1.0 mM

PO4
3− 10–200 mM

Pyruvate Respective to c(PO4
3−)

POX 0.1–10 U mL−1

ACK 0.1–10 U mL−1

MVK 10–200 mg L−1

trations constant at 17.3 mM and 1.0 mM, respectively (Table 4).
Pyruvate, which showed an influence on the KPIs, is added in sto-
ichiometric amounts to phosphate to expand the concentration
range of the former parameter.

With the obtained knowledge, the 4 parameters phosphate,
POX, ACK, and MVK constitute the adapted parameter space
for the iterative BO. Consequently, every sampling location pro-
posed during the BO represents a distinct combination of these
parameters.

2.3. Bayesian Optimization

Using all previously obtained data and the adapted parame-
ter space, four- rounds of BO were performed. In the first two

rounds, up to eight experiments were conducted, which was
reduced to four in the following rounds, as the suggested sam-
pling locations were relatively similar (Table S2). Performing one
experiment per round would be ideal but is impractical due to
lab organization and time limitations.[33] In the first BO round,
the process was optimized with respect to maximizing pro-
ductivity. In subsequent rounds, the optimization objective was
changed to the productivity-cost ratio, because further increase
in productivity would require higher enzyme quantities[34] which
are unfavorable from an economic perspective.[44] Other factors
such as sustainability could have also been chosen, depending
on the necessity and goal of the optimization.[49,50] Experimental
conditions and their results are shown in Table 5. Addition-
ally, Figure 3 presents an overview of the results of the initial
explorative experiments and of the subsequent BO.

During the first BO round, the observed productivity reaches
25.8 mmol L−1 h−1, which is less than measured in the exploratory
rounds (Experiment B1.1). Considering that the exploratory
rounds consisted of OFAT experiments, an increase in produc-
tivity during this round was not anticipated. The first BO round
primarily serves an exploratory purpose as the algorithm aims
to obtain more information on sparsely sampled areas of the
parameter space. In the second BO round, when the objec-
tive function was switched to the productivity-cost ratio, this
KPI increased to 24.2 mmol L−1 h−1

€
−1 (Experiment B2.3) in

comparison to the previous BO round. Interestingly, several
experiments were proposed with similar conditions to experi-
ment A1.10, which showed the best productivity-cost ratio in the

ChemCatChem 2025, 17, e202400777 (5 of 13) © 2024 The Author(s). ChemCatChem published by Wiley-VCH GmbH
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Table 5. Conditions and results of the four BO rounds. The assays contained the mentioned concentrations of PO4
3− , POX, ACK, and MVK. Other added

compounds were 1 mM ADP, 17.3 mM MVA, in Tris-based buffer (100 mM Tris-HCl, 150 mM NaCl, 10% glycerol, 20 mM of MgCl2, pH 7.5; with additionally
added 0.1 mM FAD, 0.1 mM ThPP, 20 U mL−1 catalase, 3 mM Na3VO4, 0.043 mM NADP+ , 0.43 mM CoA, 170 mM glucose, 200 mM NaOAc, and 20 mM MgCl2).
Assays were performed in singlicates at 30 °C and 30 rpm in a multirotator. MVA was not included in the cost calculation, as it accounts for >98% of the
costs. Results were colored for each BO round of experiments according to their value (lowest – white, higher – darker). Pr/€: productivity-cost ratio.

Experiment Pyruvate and
PO4

3− [mM]
POX
[U mL−1]

ACK
[U mL−1]

MVK
[mg L−1]

Productivity
[mmol L−1 h−1]

Costs
[€]

Pr/€
[mmol L−1 h−1

€
−1]

Optimization
objective

reference 44.7 1.0 1.0 80 18.7 0.97 19.2 –

B1.1 95.6 2.2 4.2 163.9 25.8 1.88 13.7 Productivity

B1.2 49.0 7.8 5.1 12.8 8.8 6.00 1.5

B1.3 19.0 0.1 1.0 183.4 3.4 0.33 10.3

B1.4 35.6 2.1 2.2 43.9 15.0 1.77 8.5

B1.5 14.0 0.5 0.4 24.2 4.8 0.58 8.3

B1.6 106.3 0.3 3.9 59.7 7.9 0.41 19.1

B1.7 53.9 1.3 0.5 51.9 10.9 1.19 9.1

B2.1 48.7 0.6 10 91 14.6 0.70 20.7 Productivity-cost-
ratioB2.2 110.6 0.6 1.3 114.9 15.6 0.65 24.0

B2.3 200 0.5 0.6 132.4 14.2 0.59 24.2

B2.4 49.5 0.7 10 86.5 15.4 0.73 21.1

B2.5 96.1 0.6 0.1 171.7 13.5 0.64 21.0

B2.6 44.1 0.7 10 87.8 15.9 0.75 21.2

B2.7 76.5 0.6 1.6 105.2 14.8 0.69 21.5

B2.8 58 0.7 10 76.9 15.4 0.77 20.0

B3.1 200 0.5 1 109.8 19.2 0.60 31.9

B3.2 153.9 0.6 0.8 123.8 19.9 0.64 31.0

B3.3 200 0.5 0.8 92.4 15.7 0.58 27.1

B3.4 200 0.6 1 135.3 17.9 0.66 27.2

B4.1 200 0.4 1 135.8 20.6 0.53 38.6

B4.2 200 0.4 1 130.3 20.4 0.54 37.4

B4.3 200 0.4 1 126.7 19.8 0.55 35.9

B4.4[a] 200 0.4 1 135.8 21.5 0.54 39.8

[a] 5.5 mM ADP instead of 1 mM.

Figure 3. Overview of productivity and productivity-cost ratio of the explorative experiments (A1-A3) and of the subsequent BO (B1-B4). Optimization
objectives were productivity (black dots) for experiments A1-B1 and productivity-cost ratio (columns) for experiments B2-B4. R: reference.
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initial OFAT experiments. However, the result was not confirmed
by these experiments, so experiment A1.10 is probably an incor-
rect measurement. However, this should not be a major issue, as
it was corrected in the second BO round. In the third BO round,
even the lowest measured values exceed the productivity-cost
ratios of the previous rounds. The highest value reached was
31.9 mmol L−1 h−1

€
−1 (Experiment B3.1). For the subsequent

experiments, the BO algorithm proposed similar values for the
parameters, which indicates that reaction system’s region of
optimality was narrowed down, and the algorithm entered the
exploitation phase. Three experiments were performed with only
slight variations in MVK concentrations while keeping the con-
centrations of the remaining components constant, which led
to minor differences in productivity and costs. In the context
of BO, these slightly different experiments provide richer infor-
mation on the shape of the optimization objective around the
optimum as compared to one triplicate experiment,[45] however,
they have a similar significance in terms of validation. The over-
all highest productivity-cost ratio of 38.6 mmol L−1 h−1

€
−1 was

reached using 200 mM phosphate and pyruvate, 0.4 U mL−1 POX,
1 U mL−1 ACK and 135.8 mg mL−1 MVK.

The fourth BO round was manually complemented by an
experiment (B4.4) with an increased ADP concentration of
5.5 mM instead of 1 mM. This experiment aimed to assess
whether ADP has a higher impact on the optimization objective
than previously expected. Here, a slightly higher productivity-
cost ratio of 39.8 mmol L−1 h−1

€
−1 was reached. The respective

values for productivity and costs fall within expected ranges
as compared to the prior experiments. This validates the antic-
ipated low impact of ADP on productivity, cost, and the
productivity-cost ratio.

Using an overall amount of 52 experiments, we successfully
optimized the MVAP-producing and ATP-regenerating enzymatic
system, substantially enhancing its productivity-cost ratio using
single experiments. This optimization led to a 2fold increase
of the productivity-cost ratio as compared to the reference,
while maintaining consistent productivity levels. Furthermore,
it is to be noticed that the concentration of phosphate and
hence, pyruvate is in the upper concentration range. Even higher
productivity-cost ratios may be achievable by adjusting the
bounds of the parameter space. Allowing higher concentrations
and considering phosphate and pyruvate concentrations inde-
pendently from each other may lead to further improvements
of the reported KPIs. It should also be noted that in this study,
the cost of POX is approximately four- orders of magnitude
higher than of ACK and MVK, as POX was commercially pur-
chased. Hence, its impact on the productivity-cost ratio is more
significant. In-house enzyme production or a commercial pur-
chase of all enzymes would lower its influence. However, the
data obtained from the experiments can be easily used as a
basis to optimize the studied system for other objectives. As
demonstrated by the change of the optimization objective BO is
a highly versatile approach that can incorporate and utilize infor-
mation from previous studies. We expect only a few rounds of
BO with relatively low experimental effort to be required for opti-
mizing, for example, STY.[34] In the following, the acquired data
is further analyzed in terms of the algorithm’s behavior, and the

usage of single experiments is discussed and justified in more
detail.

2.4. Data Analysis

Throughout the BO rounds B1-B4, we observed a narrowing
down of the range of proposed experiments, first guided by the
productivity and then by the productivity-cost ratio (Figure 4).
Notably, the second BO round saw an expansion in the ranges
of phosphate and ACK due to a shift in the optimization objec-
tive while POX concentration range was significantly reduced,
reflecting its disproportionate impact on cost. In the conclud-
ing BO round, only the MVK concentration was adjusted, with
other variables held constant, which indicates that the algorithm
converges to the optimum.

The BO algorithm transitioned from a wider exploratory
scope in its first and second rounds to a more precise exploita-
tion of the optimal parameter region in its third and fourth
round. This strategic shift is highlighted by the reduced variation
in design parameters, ultimately narrowing down to primarily
adjusting MVK concentration. This change signals the approach
toward refining the most efficient reaction conditions.

Figure 5 offers further insight into how the BO algorithm
investigates the parameter space, by example of BO rounds 1
and 2. Assessing the cross-sections of the parameter space in
BO round 1 (Figure 5, top), it is evident that the GPR model in
this round was still rather uninformed, which is reflected in the
wide distribution of sampling locations across the parameter
space. Areas with high concentrations of POX and low levels of
phosphate and MVK were avoided, based on low performance
during the exploratory rounds A1-A3. Notably, the best obser-
vation up to this point was made with experiment A1.10. Thus,
BO proposes multiple similar experiments (Experiment B1.1, B1.4,
B1.6, B1.8) near that point of maximum EI, aiming to improve
upon experiment A1.10. In addition, explorative experiments
(Experiment B1.2, B1.3, B1.5, B1.7) were proposed at points that
exhibit higher GPR model uncertainty (Figure S5), since regions
of uncertainty also hold the potential to improve upon the
best-measured value.

As shown in Table 5 and Figure 3, the experiments pro-
posed to exploit the region around experiment A1.10 performed
substantially worse than expected, leading to a recalibration
of the GPR and EI landscape in BO round 2 (Figure 5, bot-
tom). Besides the change of the optimization objective here,
the area previously considered promising due to the perfor-
mance of experiment A1.10 now exhibits substantially lower
EI. This change arises because, within the context of the GPR
model, the additional experiments have reclassified experiment
A1.10 as an outlier. Moreover, the explorative experiments pro-
posed in BO round 1 revealed a new region of interest that
is., higher phosphate concentrations and moderate POX lev-
els, into which the BO algorithm eventually converges (Figures
S3–S22). Notably, the decrease of overall EI from the BO round
1 to 2 underscores a reduction in uncertainty as the GPR model
becomes increasingly informed by accumulating additional data
points.

ChemCatChem 2025, 17, e202400777 (7 of 13) © 2024 The Author(s). ChemCatChem published by Wiley-VCH GmbH
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Figure 4. Concentration ranges in which the experiments were proposed during the BO rounds.

Table 6. Outlying experiments with their initial and repeated results.

Experiment Productivity
[mmol L−1 h−1]

Costs
[€]

Pr/€
[mmol L−1 h−1

€
−1]

Previous A1.10 25.1 0.97 25.8

Repeated A1.10 20.6 0.97 21.2

Previous A3.3 77.2 7.62 10.1

Repeated A3.3 44.3 7.62 5.8

Generally, no replicated experiments were conducted as part
of this study. However, to validate the inherent outlier classi-
fication performed by the GPR model, two experiments were
repeated, which were conspicuous due to their high productiv-
ity and productivity-cost ratios (Table 6). Aside from experiment
A1.10, experiment A3.3 exhibited higher productivity than sim-
ilar sampling locations with high amounts of phosphate, ACK,
and POX (e.g., Experiments A3.4-A3.6). When experiment A3.3
was repeated, it became apparent that it yielded in very simi-
lar results to experiments A3.4-A3.6 and therefore the previous
experiment (A3.3) was incorrect. At the same time, experi-
ments A3.4-A3.6 were confirmed. Even though no replicates were
performed, a validation of the results is therefore given.

The repeated experiments exhibited lower productivity and
productivity-cost ratios, confirming that these experiments were
outliers. However, the iterative optimization was performed with-
out explicitly identifying or removing such outliers. Notably, this
did not impair the optimization process, because high KPIs could
not be reproduced and proposals deviated from it, and hence,
we have demonstrated that single experiments are sufficient
when using BO in the presented case. Avoiding replicates con-
siderably reduces the number of required experiments. The final
optimal conditions were verified by performing almost identi-
cal experiments with similar concentrations, resulting in similar
objective values (Figure 4).

While the iterative optimization using the GPR model with
EI showed convergence in the fourth round of BO, and despite
mutual validation of the experimental results in the optimal
region of the parameter space, it is crucial to verify whether
we have indeed identified the optimal process conditions for
the studied enzyme cascade. As discussed in the section on
isotropic and anisotropic kernel functions in GPR modeling, the
GPR model employed for BO of the enzyme cascade used an
isotropic kernel function, which may limit the GPR model’s abil-
ity to capture nuanced differences in the influences of the
design parameters. To thoroughly evaluate this approach and
the identified optimal reaction conditions, another GPR model
employing an anisotropic kernel function was constructed, utiliz-
ing the complete final dataset. For an in-depth description of the
anisotropic GPR model, refer to the respective section in the Sup-
porting Information. The anisotropic GPR model is used to make
a robust assessment regarding the location of the optimum. This
is achieved by determining the probability density of the opti-
mal reaction conditions, as depicted in Figure 6. The probability
density is obtained by optimizing 10000 functions sampled from
the anisotropic GPR model. This procedure is further explained
in the section on sampling from GPR models. For further infor-
mation on GPR models, refer to the section on GPR models and
ref. [51].

The resulting analysis allows to identify regions of the param-
eter space which are most probable to include the optimal
experimental conditions under uncertainty. The varying shades
depicted in Figure 6 each signify 20% increments in cumu-
lative probability mass. Consequently, we can assess with a
20% probability that the system’s optimum lies within the dark
blue region and with an 80% probability that the optimum
lies within the light blue contours, respectively. Notably, even
with the enhanced capacity of the anisotropic GPR model to
capture the influence of each parameter, the region with the
highest probability of containing the optimum aligns with our

ChemCatChem 2025, 17, e202400777 (8 of 13) © 2024 The Author(s). ChemCatChem published by Wiley-VCH GmbH
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Figure 5. Results of BO rounds 1 (top) and 2 (bottom) with experimental plans. The subplots display two-dimensional cross-sections of the parameter
space, intersecting in the point of maximum EI, which is different after each round, represented by black dots. The color intensity of the heat map encodes
the EI values for potential experimental conditions, using the “viridis” color map.[69] Red dots indicate the experiments proposed for BO rounds 2 and 3,
respectively numbered according to the proposal order as discussed in the section on batch-sequential expected improvement.

ChemCatChem 2025, 17, e202400777 (9 of 13) © 2024 The Author(s). ChemCatChem published by Wiley-VCH GmbH
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Figure 6. Probability density of the optimal reaction conditions. Contours map cumulative probability mass increments of 20%, The probability density is
derived from 10000 functions sampled from an anisotropic GPR model trained on the final dataset build with the Bayesian modelling framework, PyMC.[59]

Functions of the GPR model are approximated with random Fourier features,[65] using the pyrff Python library.[66]

previous findings. However, unlike the isotropic GPR model, the
anisotropic model includes low-concentration regions of ACK,
MVK, and phosphate within the 80% probability area. This is
a notable deviation from the isotropic model, which, after the
second-round of BO, excluded these low-concentration areas, as
evidenced by Figure 5 and Figures S13–S22. The remaining prob-
ability assigned to these regions by the anisotropic model is a
consequence of the sparse experimental data available there.
While the anisotropic model can interpolate densely sampled
regions of the parameter space more accurately, extrapolations
in less explored regions have a higher uncertainty as compared
to the isotropic model. Despite this uncertainty, we are confident
that regions with low phosphate concentrations are suboptimal,
given that high productivity-cost ratios in this area are expected
to correlate with low productivity, primarily due to phosphate
limitations. Comparing the cross-sections of the final isotropic
(Figure S21) and anisotropic (Figure S24) GPR models demon-
strates that, despite the anisotropic model’s enhanced ability to
independently assess each parameter’s impact and its added
uncertainty in less sampled areas, the overall approximated
landscape of the parameter space remains largely unchanged.
Both models offer similar predictions for the productivity-cost

ratio. However, the anisotropic model indicates marginally higher
ratios across a wider range of phosphate and MVK concentra-
tions and suggests a more confined optimal range for ACK.
This underscores the effectiveness of the initial isotropic kernel
function assumption for the BO.

3. Conclusions and Outlook

Utilizing BO, an enzymatic system for MVAP production with
included ATP regeneration by POX and ACK was optimized for
productivity and costs using single experiments. As surrogate
model, GPR and as acquisition function, EI was used, though
other methods can be chosen. The impacts of parameters on the
KPIs were initially determined by an OFAT approach to explore
the parameter space. Here, only compound concentrations were
considered, but other influencing factors such as temperature or
pH can be included as well. The results of the three exploratory
rounds indicated that the high-dimensional parameter space
could be reduced from seven parameters to four in the fol-
lowing rounds. Based on the combined data of the first three

ChemCatChem 2025, 17, e202400777 (10 of 13) © 2024 The Author(s). ChemCatChem published by Wiley-VCH GmbH
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rounds, only four additional rounds that were designed using
BO were necessary to identify the best productivity-cost ratio,
which results in 52 experiments in total. Our study demonstrated
that single experiments are sufficient for this task, efficiently
exploring the parameter space with a focus on regions near
high objective values. This way previously measured results are
intrinsically validated, and outlying results are compensated,
while saving experimental resources. A liquid handling robot
could be fully integrated with the BO algorithm to further
reduce the work effort. A flexible switch of the optimization
objective was demonstrated during the optimization, and with
the acquired data set, a rapid optimization for other targets will
be possible. Furthermore, a multi-objective optimization also
known as Pareto optimization, as it is often needed in enzyme
cascades, is feasible in the BO context,[23] for example, by replac-
ing EI by expected hypervolume improvement.[52] Hence, BO
is an optimization approach that is applicable to a variety of
(biological) systems, which have to be improved in a time and
cost-efficient manner.

4. Experimental Section

4.1. Material

Chemicals were purchased from Acros Organics (ThermoFisher Sci-
entific, Waltham, MA, USA), AppliChem (AppliChem GmbH, Darm-
stadt, Germany), Merck (Merck KGaA, Darmstadt, Germany), Roth
(Carl Roth, Karlsruhe, Germany), Santa Cruz Biotechnology (Santa
Cruz Biotechnology, Inc., Dallas, TX, USA), TCI (TCI Deutschland
GmbH, Eschborn, Germany), ThermoFisher (ThermoFisher Scientific,
Waltham, MA, USA), and VWR (VWR international GmbH, Darmstadt,
Germany).

4.2. Enzyme Production

The GeneArt Strings DNA Fragments (ThermoFisher Scientific,
Waltham, MA, USA) of ACK homologues were purchased and cloned
by Gibson Assembly to the PCR amplified pET28b.[53] Primers and
gene sequences are listed in Table S1. Correct implementation was
confirmed by Sanger Sequencing. Plasmid of MVK was kindly pro-
vided by Frank Schulz and both, ACK and MVK were expressed and
purified as explained in ref. [35]. POX from Aerococcus viridans was
purchased from Merck (Merck KgaA, Darmstadt, Germany).

4.3. Enzyme Assays

Enzyme assays were performed with purified enzymes in 1.5 mL
Eppendorf tubes, filled up with activity buffer (100 mM Tris-HCl,
150 mM NaCl, 10% glycerol, 20 mM MgCl2, pH 7.5) to a final reac-
tion volume of 0.35 mL. All assays contained additionally 0.1 mM
FAD, 0.1 mM ThPP, 20 U mL−1 catalase, 20 mM MgCl2, 3 mM Na3VO4,
0.043 mM NADP+, 0.43 mM CoA, 170 mM glucose, and 200 mM
NaOAc. The latter five components were added because they are
crucial for a larger FPP-producing cascade and no MVA-activity was
detected without (data not shown).[39] The reaction was incubated
for 24 h at 30 °C in a multirotator with 30 rpm to allow for a suf-
ficient oxygen supply. Samples were taken regularly, and enzymes
were inactivated at 95 °C for 5 min.

4.4. Analytics

To fit in the linear range of the calibration curve, samples were
centrifuged and diluted with water prior to injection. The analytes
were measured using a LC-MS (1260 Infinity II LC system combined
with 6120 Quadrupole MS (Agilent, Santa Clara, CA, USA)) using
a SeQuant ZIC-pHILIC 5 μm polymer 200 Å, 150 × 2.1 mm column
(Merck KgaA, Darmstadt, Germany), heated to 40 °C and samples
from the fourth BO round were measured using a Poroshell 120
HILIC-Z 2.1 mm × 150 mm, 2.7 μm (Agilent, Santa Clara, CA, USA)
heated to 35 °C. The flow rate was set to 0.2 mL min−1 and the injec-
tion volume was 3 μL. The following gradient of mobile phase A
(90% 10 mM NH4Ac, pH 9.2, 10% acetonitrile) and mobile phase B
(90% acetonitrile, 10% 10 mM NH4Ac, pH 9.2) was used for separa-
tion: 0 min: 0% A; 1 min: 0% A; 30 min: 75% A; 34 min: 100% A; 39
min: 100% A, 49 min: 0% A, 64 min 0% A. Negative mode was used
for the MS measurements and the parameters for electron spray ion-
ization (ESI) were set to the following: drying gas temperature: 350
°C, nebulizer pressure: 35 psig, drying gas flow: 12 L min−1, capillary
voltage: 3500 V. Analytes were detected in the selected ion mode
(SIM) with m/z of 147.0 and 147.1 during the first 15 min to detect
MVA and 226.9, 227, 227.1, and 455 for monomeric and dimeric MVAP
from 15 min to 33 min. Specific activities and productivities were
determined from substrate and product concentrations, respectively
as initial rates in the linear range.

4.5. Software

In this study, all analyses and visualizations were conducted using
Python 3.11. The initial processing of experimental data and the for-
mulation of sampling locations were handled by our in-house soft-
ware package Planalyze, which is available upon request. Planalyze
integrates several Python libraries, including scikit-learn (v1.1.3),[54]

NumPy (v1.23.4),[55] SciPy (v1.9.3),[56] pandas (v1.5.1),[57] and xar-
ray (v2022.11.0).[58] For the construction of the anisotropic GPR
model, we utilized PyMC (v5.10.3).[59] The visualization of our data
and results was facilitated by Matplotlib (v3.6.2)[60] and seaborn
(v0.12.1),[61] with ArViz (v0.17.0)[62] providing additional support for
statistical graphics.

4.6. Gaussian Process Regression Modeling

BO of complex biochemical processes, such as enzyme cascades
with multiple design parameters, requires regression models capa-
ble of capturing nonlinear relationships between design parameters
and performance indicators. These models must also handle noisy
measurements of the observed ground-truth system behavior. In
this study, we use GPR models for that task. GPR models, which
employ Gaussian Processes (GPs) for regression purposes, are non-
parametric, that is, they do not assume a specific parametric form
to explain the functional dependency of KPIs on design parameters.
GPs are distributions over infinitely many functions that can poten-
tially explain the observed data. The fitting of a GP involves not only
the match of the model to the data but also the smoothness and
variability of the approximating functions, all while accounting for
prior information on the underlying system. This way, GPs can infer
the likelihood of each function that potentially explains the data.
Moreover, they can inherently quantify the uncertainty of their own
predictions. These two features are instrumental for guiding optimal
experimental design.

A GP is defined by a mean function and a covariance func-
tion. The mean function represents the average output across the
parameter space, serving as a baseline prediction. The covariance
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function, defined in part by its length scale, determines the similar-
ity between different points in the parameter space. It governs how
the GP generalizes from observed data to unexplored areas of the
parameter space, with the length scale shaping both the correlation
and the rate of change across the parameter space.

In this study, the GP was parametrized with a mean function
of zero, which is a common choice in many applications.[22,25,63] By
default, GPs assume that input data can span the entire spectrum of
real numbers. However, this study’s design parameters – substrate
and enzyme concentrations – are strictly positive. To accommodate
this constraint, these domains are mapped by log-transforming all
input data. This approach offers the added benefit of linearizing the
relationship between design parameters and observations, aiding
the GPR model in more effectively interpreting and predicting the
system’s behavior across a broad range of parameter values.

For the covariance function, the sum of a Matérn kernel and
a white noise kernel was selected. This choice enables the model
to represent 1) smooth variations of the underlying biological sys-
tem (Matérn kernel) and 2) uncorrelated noise (white noise kernel),
which is inherent to all measurements in biocatalysis. We assume
that the objective values, that is, productivity or productivity-cost
ratio, vary smoothly in response to changes in the design parame-
ters. Hence, we set the prior of the length scale to half the extent of
the logarithmically transformed parameter ranges.

4.7. Isotropic and Anisotropic Kernel Functions in Gaussian
Process Modeling

The initial dataset utilized for fitting the GPR model predominantly
consists of OFAT experiments, where each data point uniquely varies
in just a single parameter. Consequently, the resulting sparse and
uneven distribution of data points presents a considerable risk of
overfitting the GPR model. To mitigate this issue, an isotropic kernel
function was selected for the GPR model during BO. Isotropic kernel
functions are characterized by uniform length scales across all input
dimensions. This uniformity assumes a consistent rate of change in
the GPR model’s response, regardless of the direction in the param-
eter space which offers multiple advantages. Notably, it reduces the
risk of overfitting and facilitates a faster identification of the region
of optimality. However, while the uniform learning of isotropic ker-
nel functions throughout the parameter space is beneficial in this
context, it can also have limitations. Specifically, GPR models using
isotropic kernel functions may struggle to adequately capture com-
plex interactions and varying impacts of different parameters on
the studied performance indicators, potentially leading to subopti-
mal experiment proposals. In contrast, anisotropic kernel functions,
which feature distinct length scales for each dimension, provide
a more adaptable approach. This additional flexibility of adjusting
the length scales to each parameter of the system enables the
model to more accurately represent regions of the parameter space
that exhibit particularly heterogeneous behavior. To evaluate this
potential shortcoming of isotropic kernel functions and validate our
initial assumption, we constructed a second GPR model with an
anisotropic kernel function based on the final dataset of BO. This
model, tailored to acknowledge varying scales of influence across
all parameters, was used for generating the probability density plot
shown in Figure 6. A detailed description of the anisotropic GPR
model can be found in the Supporting Information.

4.8. Batch-sequential Expected Improvement

To propose sampling locations, we utilized EI as acquisition func-
tion. It predicts the expected amount of improvement at any given

point in the parameter space, relative to the current best observa-
tion. These predictions are based on both the mean and variance
of the underlying GPR model. EI balances between exploring less
sampled regions and exploiting known promising areas. It predicts
one optimal experiment at a time. Given the practical time and
cost-related constraints in this study, we applied a so-called batch-
sequential approach for proposing up to 8 experiments that can be
executed simultaneously in each round of BO. In this approach, EI
is repeatedly applied to propose optimal experiments, while tem-
porarily updating the GPR model with its own predictions of each
proposed experiment until the number of desired experiments is
reached. The temporary data are subsequently removed from the
database and replaced by the observed measurements.

4.9. Sampling From Gaussian Process Regression Models

GPR models can be conceptualized as probability distributions over
functions that fit a given dataset. By employing such a GPR model,
the location of the system’s optimum under uncertainty can be
determined by calculating the probability density of the optimal
reaction conditions, as depicted in Figure 6.

In our study, this is achieved by sampling a sufficiently large
number of functions from the anisotropic GPR model and subse-
quently determining the location of the maximum for each sampled
function. By examining the distribution of these maxima, we can
assess the probability for each region within the parameter space to
contain the optimum of the underlying system. However, there are
no known methods to directly sample exact functions from a GPR
model.[23] A commonly applied alternative to this is to sample ana-
lytic approximations[23,25] of these functions which can be efficiently
evaluated and optimized. In our study, we utilize random Fourier
features approximations (RFF),[64,65] to approximate functions sam-
pled from the anisotropic GPR model. These RFF approximations are
calculated using the pyrff Python library.[66] For a visual compari-
son, a side-by-side illustration of sample functions drawn from the
anisotropic GPR model and their RFF approximations is provided in
the Supporting Information (Figure S23).

Supporting Information

The authors have cited additional references within the Support-
ing Information.[67,68]
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