001031618 001__ 1031618
001031618 005__ 20250213220527.0
001031618 0247_ $$2doi$$a10.1016/j.ceramint.2024.09.255
001031618 0247_ $$2ISSN$$a0272-8842
001031618 0247_ $$2ISSN$$a0392-2960
001031618 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-05745
001031618 0247_ $$2WOS$$aWOS:001356954500001
001031618 037__ $$aFZJ-2024-05745
001031618 041__ $$aEnglish
001031618 082__ $$a670
001031618 1001_ $$0P:(DE-HGF)0$$aTaoussi, S.$$b0$$eCorresponding author
001031618 245__ $$aGlass-ceramics and molybdenum doping synergistic approach for Nasicon-type solid-state electrolytes
001031618 260__ $$aFaenza$$bCeramurgia$$c2024
001031618 3367_ $$2DRIVER$$aarticle
001031618 3367_ $$2DataCite$$aOutput Types/Journal article
001031618 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1739448732_4289
001031618 3367_ $$2BibTeX$$aARTICLE
001031618 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001031618 3367_ $$00$$2EndNote$$aJournal Article
001031618 520__ $$aAdvancing energy density, enabling lithium metal anodes, and ensuring unparalleled safety and operational reliability in lithium batteries hinge on advancing inorganic solid-state electrolytes. To overcome current im-pediments, we present an innovative approach that integrates glass-ceramics with a pioneering new Nasicon strategy involving molybdenum doping. In the conducted study, a series of 14Li2O-9Al2O3-38TiO2-(39-x)P2O5- xMoO3 glasses, denoted as LATPMox, along with their corresponding glass-ceramics (LATPMox-GC), have exhibited a promising characteristic as solid electrolytes. X-ray diffraction (XRD) analysis confirms the formation of the novel Mo-doped Nasicon phases in the glass-ceramics, as validated by Rietveld refinement. Examination of the crystallization kinetic behavior of the glasses reveals a three-dimensional nucleation process with spherical particle growth, featuring an activation energy of 165 kJ mol-1. Transmission Electron Microscopy TEM char-acterization aligns crystallization behavior with crystallite and distribution within the glass matrix, resulting in a compact and dense microstructure. The structural properties of the resultant phases are examined through FT-IR, Raman spectroscopy, and TEM-SEAD analysis. Vickers indentation tests were employed to assess the microscopic fracture toughness, and both the glass and glass-ceramics materials demonstrated favorable mechanical per-formance. Optical characterization using UV–visible absorption highlights the reduction of Mo6+ to Mo5+, likely occupying tetrahedral sites within the crystalline lattice. Impedance spectroscopy measurement showcases the effective promotion of ionic conductivity following Mo doping, reaching a total conductivity value of 5.50 × 10-5 Ω-1 cm-1 along with a high lithium transference number of 0.99 at room temperature for LATPMo2.6-GC glass-ceramic. This value is larger than that of many other glass-ceramics as well as that of the well-known lithium phosphorous oxy-nitride LiPON solid electrolyte whose ionic conductivity at RT is around 2 × 10-6 Ω-1 cm-1.
001031618 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x0
001031618 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x1
001031618 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001031618 65027 $$0V:(DE-MLZ)SciArea-180$$2V:(DE-HGF)$$aMaterials Science$$x0
001031618 65017 $$0V:(DE-MLZ)GC-110$$2V:(DE-HGF)$$aEnergy$$x0
001031618 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
001031618 7001_ $$0P:(DE-HGF)0$$aHoummada, K.$$b1
001031618 7001_ $$0P:(DE-HGF)0$$aLahmar, A.$$b2
001031618 7001_ $$0P:(DE-HGF)0$$aNaji, M.$$b3
001031618 7001_ $$0P:(DE-HGF)0$$aBih, H.$$b4
001031618 7001_ $$0P:(DE-HGF)0$$aAlami, J.$$b5
001031618 7001_ $$0P:(DE-HGF)0$$aManoun, B.$$b6
001031618 7001_ $$0P:(DE-HGF)0$$aEl bouari, A.$$b7
001031618 7001_ $$0P:(DE-Juel1)130646$$afrielinghaus, H.$$b8$$ufzj
001031618 7001_ $$0P:(DE-HGF)0$$aLazor, P.$$b9
001031618 7001_ $$00000-0002-6858-9507$$aGraça, M. P. F.$$b10
001031618 7001_ $$0P:(DE-HGF)0$$aBih, L.$$b11
001031618 773__ $$0PERI:(DE-600)245887-1$$a10.1016/j.ceramint.2024.09.255$$gp. S0272884224042627$$n23$$p49134-49149$$tCeramics international / Ci news$$v50$$x0272-8842$$y2024
001031618 8564_ $$uhttps://juser.fz-juelich.de/record/1031618/files/Updated%20Manuscript..pdf$$yPublished on 2024-09-24. Available in OpenAccess from 2026-09-24.
001031618 8564_ $$uhttps://juser.fz-juelich.de/record/1031618/files/Updated%20Manuscript..gif?subformat=icon$$xicon$$yPublished on 2024-09-24. Available in OpenAccess from 2026-09-24.
001031618 8564_ $$uhttps://juser.fz-juelich.de/record/1031618/files/Updated%20Manuscript..jpg?subformat=icon-1440$$xicon-1440$$yPublished on 2024-09-24. Available in OpenAccess from 2026-09-24.
001031618 8564_ $$uhttps://juser.fz-juelich.de/record/1031618/files/Updated%20Manuscript..jpg?subformat=icon-180$$xicon-180$$yPublished on 2024-09-24. Available in OpenAccess from 2026-09-24.
001031618 8564_ $$uhttps://juser.fz-juelich.de/record/1031618/files/Updated%20Manuscript..jpg?subformat=icon-640$$xicon-640$$yPublished on 2024-09-24. Available in OpenAccess from 2026-09-24.
001031618 909CO $$ooai:juser.fz-juelich.de:1031618$$pVDB:MLZ$$pdriver$$popen_access$$pdnbdelivery$$pVDB$$popenaire
001031618 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130646$$aForschungszentrum Jülich$$b8$$kFZJ
001031618 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x0
001031618 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x1
001031618 9141_ $$y2024
001031618 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
001031618 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
001031618 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
001031618 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001031618 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
001031618 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCERAM INT : 2015
001031618 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
001031618 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
001031618 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
001031618 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
001031618 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
001031618 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
001031618 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
001031618 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
001031618 920__ $$lyes
001031618 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
001031618 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x1
001031618 9201_ $$0I:(DE-Juel1)JCNS-4-20201012$$kJCNS-4$$lJCNS-4$$x2
001031618 980__ $$ajournal
001031618 980__ $$aVDB
001031618 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
001031618 980__ $$aI:(DE-588b)4597118-3
001031618 980__ $$aI:(DE-Juel1)JCNS-4-20201012
001031618 980__ $$aUNRESTRICTED
001031618 9801_ $$aFullTexts