Hauptseite > Publikationsdatenbank > Glass-ceramics and molybdenum doping synergistic approach for Nasicon-type solid-state electrolytes > print |
001 | 1031618 | ||
005 | 20250213220527.0 | ||
024 | 7 | _ | |a 10.1016/j.ceramint.2024.09.255 |2 doi |
024 | 7 | _ | |a 0272-8842 |2 ISSN |
024 | 7 | _ | |a 0392-2960 |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2024-05745 |2 datacite_doi |
024 | 7 | _ | |a WOS:001356954500001 |2 WOS |
037 | _ | _ | |a FZJ-2024-05745 |
041 | _ | _ | |a English |
082 | _ | _ | |a 670 |
100 | 1 | _ | |a Taoussi, S. |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a Glass-ceramics and molybdenum doping synergistic approach for Nasicon-type solid-state electrolytes |
260 | _ | _ | |a Faenza |c 2024 |b Ceramurgia |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1739448732_4289 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Advancing energy density, enabling lithium metal anodes, and ensuring unparalleled safety and operational reliability in lithium batteries hinge on advancing inorganic solid-state electrolytes. To overcome current im-pediments, we present an innovative approach that integrates glass-ceramics with a pioneering new Nasicon strategy involving molybdenum doping. In the conducted study, a series of 14Li2O-9Al2O3-38TiO2-(39-x)P2O5- xMoO3 glasses, denoted as LATPMox, along with their corresponding glass-ceramics (LATPMox-GC), have exhibited a promising characteristic as solid electrolytes. X-ray diffraction (XRD) analysis confirms the formation of the novel Mo-doped Nasicon phases in the glass-ceramics, as validated by Rietveld refinement. Examination of the crystallization kinetic behavior of the glasses reveals a three-dimensional nucleation process with spherical particle growth, featuring an activation energy of 165 kJ mol-1. Transmission Electron Microscopy TEM char-acterization aligns crystallization behavior with crystallite and distribution within the glass matrix, resulting in a compact and dense microstructure. The structural properties of the resultant phases are examined through FT-IR, Raman spectroscopy, and TEM-SEAD analysis. Vickers indentation tests were employed to assess the microscopic fracture toughness, and both the glass and glass-ceramics materials demonstrated favorable mechanical per-formance. Optical characterization using UV–visible absorption highlights the reduction of Mo6+ to Mo5+, likely occupying tetrahedral sites within the crystalline lattice. Impedance spectroscopy measurement showcases the effective promotion of ionic conductivity following Mo doping, reaching a total conductivity value of 5.50 × 10-5 Ω-1 cm-1 along with a high lithium transference number of 0.99 at room temperature for LATPMo2.6-GC glass-ceramic. This value is larger than that of many other glass-ceramics as well as that of the well-known lithium phosphorous oxy-nitride LiPON solid electrolyte whose ionic conductivity at RT is around 2 × 10-6 Ω-1 cm-1. |
536 | _ | _ | |a 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4) |0 G:(DE-HGF)POF4-6G4 |c POF4-6G4 |f POF IV |x 0 |
536 | _ | _ | |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632) |0 G:(DE-HGF)POF4-632 |c POF4-632 |f POF IV |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
650 | 2 | 7 | |a Materials Science |0 V:(DE-MLZ)SciArea-180 |2 V:(DE-HGF) |x 0 |
650 | 1 | 7 | |a Energy |0 V:(DE-MLZ)GC-110 |2 V:(DE-HGF) |x 0 |
693 | _ | _ | |0 EXP:(DE-MLZ)NOSPEC-20140101 |5 EXP:(DE-MLZ)NOSPEC-20140101 |e No specific instrument |x 0 |
700 | 1 | _ | |a Hoummada, K. |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Lahmar, A. |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Naji, M. |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Bih, H. |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Alami, J. |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Manoun, B. |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a El bouari, A. |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a frielinghaus, H. |0 P:(DE-Juel1)130646 |b 8 |u fzj |
700 | 1 | _ | |a Lazor, P. |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Graça, M. P. F. |0 0000-0002-6858-9507 |b 10 |
700 | 1 | _ | |a Bih, L. |0 P:(DE-HGF)0 |b 11 |
773 | _ | _ | |a 10.1016/j.ceramint.2024.09.255 |g p. S0272884224042627 |0 PERI:(DE-600)245887-1 |n 23 |p 49134-49149 |t Ceramics international / Ci news |v 50 |y 2024 |x 0272-8842 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1031618/files/Updated%20Manuscript..pdf |y Published on 2024-09-24. Available in OpenAccess from 2026-09-24. |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1031618/files/Updated%20Manuscript..gif?subformat=icon |x icon |y Published on 2024-09-24. Available in OpenAccess from 2026-09-24. |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1031618/files/Updated%20Manuscript..jpg?subformat=icon-1440 |x icon-1440 |y Published on 2024-09-24. Available in OpenAccess from 2026-09-24. |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1031618/files/Updated%20Manuscript..jpg?subformat=icon-180 |x icon-180 |y Published on 2024-09-24. Available in OpenAccess from 2026-09-24. |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1031618/files/Updated%20Manuscript..jpg?subformat=icon-640 |x icon-640 |y Published on 2024-09-24. Available in OpenAccess from 2026-09-24. |
909 | C | O | |o oai:juser.fz-juelich.de:1031618 |p openaire |p open_access |p driver |p VDB:MLZ |p VDB |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)130646 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Großgeräte: Materie |1 G:(DE-HGF)POF4-6G0 |0 G:(DE-HGF)POF4-6G4 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Jülich Centre for Neutron Research (JCNS) (FZJ) |x 0 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF4-630 |0 G:(DE-HGF)POF4-632 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Materials – Quantum, Complex and Functional Materials |x 1 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b CERAM INT : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)JCNS-FRM-II-20110218 |k JCNS-FRM-II |l JCNS-FRM-II |x 0 |
920 | 1 | _ | |0 I:(DE-588b)4597118-3 |k MLZ |l Heinz Maier-Leibnitz Zentrum |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)JCNS-4-20201012 |k JCNS-4 |l JCNS-4 |x 2 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)JCNS-FRM-II-20110218 |
980 | _ | _ | |a I:(DE-588b)4597118-3 |
980 | _ | _ | |a I:(DE-Juel1)JCNS-4-20201012 |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|