001     1031618
005     20250213220527.0
024 7 _ |a 10.1016/j.ceramint.2024.09.255
|2 doi
024 7 _ |a 0272-8842
|2 ISSN
024 7 _ |a 0392-2960
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-05745
|2 datacite_doi
024 7 _ |a WOS:001356954500001
|2 WOS
037 _ _ |a FZJ-2024-05745
041 _ _ |a English
082 _ _ |a 670
100 1 _ |a Taoussi, S.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Glass-ceramics and molybdenum doping synergistic approach for Nasicon-type solid-state electrolytes
260 _ _ |a Faenza
|c 2024
|b Ceramurgia
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1739448732_4289
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Advancing energy density, enabling lithium metal anodes, and ensuring unparalleled safety and operational reliability in lithium batteries hinge on advancing inorganic solid-state electrolytes. To overcome current im-pediments, we present an innovative approach that integrates glass-ceramics with a pioneering new Nasicon strategy involving molybdenum doping. In the conducted study, a series of 14Li2O-9Al2O3-38TiO2-(39-x)P2O5- xMoO3 glasses, denoted as LATPMox, along with their corresponding glass-ceramics (LATPMox-GC), have exhibited a promising characteristic as solid electrolytes. X-ray diffraction (XRD) analysis confirms the formation of the novel Mo-doped Nasicon phases in the glass-ceramics, as validated by Rietveld refinement. Examination of the crystallization kinetic behavior of the glasses reveals a three-dimensional nucleation process with spherical particle growth, featuring an activation energy of 165 kJ mol-1. Transmission Electron Microscopy TEM char-acterization aligns crystallization behavior with crystallite and distribution within the glass matrix, resulting in a compact and dense microstructure. The structural properties of the resultant phases are examined through FT-IR, Raman spectroscopy, and TEM-SEAD analysis. Vickers indentation tests were employed to assess the microscopic fracture toughness, and both the glass and glass-ceramics materials demonstrated favorable mechanical per-formance. Optical characterization using UV–visible absorption highlights the reduction of Mo6+ to Mo5+, likely occupying tetrahedral sites within the crystalline lattice. Impedance spectroscopy measurement showcases the effective promotion of ionic conductivity following Mo doping, reaching a total conductivity value of 5.50 × 10-5 Ω-1 cm-1 along with a high lithium transference number of 0.99 at room temperature for LATPMo2.6-GC glass-ceramic. This value is larger than that of many other glass-ceramics as well as that of the well-known lithium phosphorous oxy-nitride LiPON solid electrolyte whose ionic conductivity at RT is around 2 × 10-6 Ω-1 cm-1.
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)
|0 G:(DE-HGF)POF4-6G4
|c POF4-6G4
|f POF IV
|x 0
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
650 2 7 |a Materials Science
|0 V:(DE-MLZ)SciArea-180
|2 V:(DE-HGF)
|x 0
650 1 7 |a Energy
|0 V:(DE-MLZ)GC-110
|2 V:(DE-HGF)
|x 0
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Hoummada, K.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Lahmar, A.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Naji, M.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Bih, H.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Alami, J.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Manoun, B.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a El bouari, A.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a frielinghaus, H.
|0 P:(DE-Juel1)130646
|b 8
|u fzj
700 1 _ |a Lazor, P.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Graça, M. P. F.
|0 0000-0002-6858-9507
|b 10
700 1 _ |a Bih, L.
|0 P:(DE-HGF)0
|b 11
773 _ _ |a 10.1016/j.ceramint.2024.09.255
|g p. S0272884224042627
|0 PERI:(DE-600)245887-1
|n 23
|p 49134-49149
|t Ceramics international / Ci news
|v 50
|y 2024
|x 0272-8842
856 4 _ |u https://juser.fz-juelich.de/record/1031618/files/Updated%20Manuscript..pdf
|y Published on 2024-09-24. Available in OpenAccess from 2026-09-24.
856 4 _ |u https://juser.fz-juelich.de/record/1031618/files/Updated%20Manuscript..gif?subformat=icon
|x icon
|y Published on 2024-09-24. Available in OpenAccess from 2026-09-24.
856 4 _ |u https://juser.fz-juelich.de/record/1031618/files/Updated%20Manuscript..jpg?subformat=icon-1440
|x icon-1440
|y Published on 2024-09-24. Available in OpenAccess from 2026-09-24.
856 4 _ |u https://juser.fz-juelich.de/record/1031618/files/Updated%20Manuscript..jpg?subformat=icon-180
|x icon-180
|y Published on 2024-09-24. Available in OpenAccess from 2026-09-24.
856 4 _ |u https://juser.fz-juelich.de/record/1031618/files/Updated%20Manuscript..jpg?subformat=icon-640
|x icon-640
|y Published on 2024-09-24. Available in OpenAccess from 2026-09-24.
909 C O |o oai:juser.fz-juelich.de:1031618
|p openaire
|p open_access
|p driver
|p VDB:MLZ
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)130646
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G4
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Jülich Centre for Neutron Research (JCNS) (FZJ)
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 1
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CERAM INT : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS-FRM-II
|l JCNS-FRM-II
|x 0
920 1 _ |0 I:(DE-588b)4597118-3
|k MLZ
|l Heinz Maier-Leibnitz Zentrum
|x 1
920 1 _ |0 I:(DE-Juel1)JCNS-4-20201012
|k JCNS-4
|l JCNS-4
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a I:(DE-588b)4597118-3
980 _ _ |a I:(DE-Juel1)JCNS-4-20201012
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21