001031627 001__ 1031627
001031627 005__ 20250203133210.0
001031627 0247_ $$2doi$$a10.1016/j.chemosphere.2024.143422
001031627 0247_ $$2ISSN$$a0045-6535
001031627 0247_ $$2ISSN$$a1879-1298
001031627 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-05753
001031627 037__ $$aFZJ-2024-05753
001031627 041__ $$aEnglish
001031627 082__ $$a333.7
001031627 1001_ $$0P:(DE-HGF)0$$aMaâroufi, Lucie$$b0
001031627 245__ $$aNon-extractable residues of perfluorooctanoic acid (PFOA) in soil
001031627 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2024
001031627 3367_ $$2DRIVER$$aarticle
001031627 3367_ $$2DataCite$$aOutput Types/Journal article
001031627 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1728370283_2303
001031627 3367_ $$2BibTeX$$aARTICLE
001031627 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001031627 3367_ $$00$$2EndNote$$aJournal Article
001031627 520__ $$aPer- and polyfluoroalkyl substances have gained increased attention due to their persistence, ubiquitous presence in the environment, and toxicity. We hypothesised that the formation of non-extractable residues [NER] occurs in soils and contributes to the overall persistence of these priority pollutants, and that NER formation is controlled by temperature. To test these hypotheses, we used 14C-labelled perfluorooctanoic acid [PFOA] as target compound, added it to two arable soils (Cambisol, Luvisol), and incubated them at 10°C and 20°C in the dark. To support potential co-metabolic decomposition, some samples were additionally fed with glucose to enhance microbial activity. The PFOA residues were then sequentially extracted using 0.01 M CaCl2, followed by accelerated solvent extraction (ASE) with methanol or methanol/acetic acid after 0, 1, 3, 9, 30, 62, and 90 days of incubation. In addition, we monitored the release of 14C into the gas phase as well as [14C]-PFOA-NER after dry combustion and liquid scintillation counting. After 90 days, we found that the [14C]-PFOA content declined in the extraction order of CaCl2 ((bio)available fraction) > ASE (residual fraction) > NER > gas fraction), with most rapid changes occurring in the first 9 days of incubation. NER formation was different in the two soils and reached 5-9% of the applied amount in the Cambisol and Luvisol, respectively. Noteworthy the proportion of 14C-PFOA in the (bio)available fraction remained relatively stable over time at 56-62% of the applied amount, indicating the reversible transfer into this fraction from a bi-exponentially declining residual (ASE) pool. These dissipation patterns were neither influenced by temperature nor by the addition of glucose. We conclude that NER exist for PFOA, but that the majority of PFOA remains in (bio)available form, thus maintaining toxicity and mobility in soil for prolonged periods of time.
001031627 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x0
001031627 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001031627 7001_ $$0P:(DE-Juel1)129471$$aHofmann, Diana$$b1$$eCorresponding author
001031627 7001_ $$0P:(DE-HGF)0$$aZarfl, Christiane$$b2
001031627 7001_ $$0P:(DE-HGF)0$$aHüben, Michael$$b3
001031627 7001_ $$0P:(DE-Juel1)129523$$aPütz, Thomas$$b4$$ufzj
001031627 7001_ $$0P:(DE-Juel1)129427$$aAmelung, Wulf$$b5
001031627 773__ $$0PERI:(DE-600)1496851-4$$a10.1016/j.chemosphere.2024.143422$$gVol. 366, p. 143422 -$$p143422$$tChemosphere$$v366$$x0045-6535$$y2024
001031627 8564_ $$uhttps://juser.fz-juelich.de/record/1031627/files/PFOA_print.pdf$$yOpenAccess
001031627 8564_ $$uhttps://juser.fz-juelich.de/record/1031627/files/PFOA_print.gif?subformat=icon$$xicon$$yOpenAccess
001031627 8564_ $$uhttps://juser.fz-juelich.de/record/1031627/files/PFOA_print.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001031627 8564_ $$uhttps://juser.fz-juelich.de/record/1031627/files/PFOA_print.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001031627 8564_ $$uhttps://juser.fz-juelich.de/record/1031627/files/PFOA_print.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001031627 8767_ $$d2025-01-08$$eHybrid-OA$$jDEAL
001031627 909CO $$ooai:juser.fz-juelich.de:1031627$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
001031627 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b0$$kFZJ
001031627 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129471$$aForschungszentrum Jülich$$b1$$kFZJ
001031627 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129523$$aForschungszentrum Jülich$$b4$$kFZJ
001031627 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129427$$aForschungszentrum Jülich$$b5$$kFZJ
001031627 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
001031627 9141_ $$y2024
001031627 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001031627 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001031627 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001031627 915pc $$0PC:(DE-HGF)0125$$2APC$$aDEAL: Elsevier 09/01/2023
001031627 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-21
001031627 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-10-21
001031627 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-21
001031627 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001031627 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001031627 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-17$$wger
001031627 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEMOSPHERE : 2022$$d2024-12-17
001031627 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-17
001031627 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-17
001031627 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-17
001031627 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-17
001031627 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-17
001031627 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2024-12-17
001031627 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2024-12-17
001031627 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-17
001031627 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-17
001031627 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCHEMOSPHERE : 2022$$d2024-12-17
001031627 920__ $$lyes
001031627 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
001031627 9801_ $$aFullTexts
001031627 980__ $$ajournal
001031627 980__ $$aVDB
001031627 980__ $$aUNRESTRICTED
001031627 980__ $$aI:(DE-Juel1)IBG-3-20101118
001031627 980__ $$aAPC