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Brain structure provides the stage on which activity unfolds. Models linking connectivity to dynamics have relied on
probabilistic estimates of connectivity derived from paired electrophysiological recordings or single-neuron morphologies
obtained by light microscopy (LM) studies. Only recently have electron microscopy (EM) data sets been processed and
made available for volumes of cortex on the cubic millimeter scale, thereby exposing the actual connectivity of neurons.
Here, we construct a population-based, layer-resolved connectivity map from EM data, taking into account the spatial
scale of local cortical connectivity. We compare the obtained connectivity with a map based on an established LM
data set. Simulating spiking neural networks constrained by the derived microcircuit architectures shows that both
models allow for biologically plausible ongoing activity when synaptic currents caused by neurons outside the network
model are adjusted for every population independently. However, differentially varying the external current onto
excitatory and inhibitory populations uncovers that only the EM-based model robustly shows plausible dynamics.
Our work confirms the long-standing hypothesis that a preference of excitatory neurons for inhibitory targets, not
present in the LM-based model, promotes balanced activity in the cortical microcircuit.
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1 Introduction

Microcircuits are the fundamental building blocks of the
neocortex. Early observations identified a vertical com-
partmentalization into six layers [1] that, as a simplified
concept, is still upheld to this day [2]. Horizontally, a
modular organization consisting of repeating, stereotyped
columns was suggested [3]. These concepts culminated
in the notion of the “canonical microcircuit” that tries to
reconcile the perceived generic structure of the neocortex
with its function [4, 5]. The validity of this notion is sub-
ject to debate [6, 7] due to prominent non-uniformities
in the composition of cortical tissue across species and
areas within one species [8, 9]. Nonetheless, the univer-
sal aspects of the area-specific microcircuits constrain
cortical dynamics which ultimately underlie their func-
tion and thus are of fundamental importance for our
understanding of the mammalian brain.

Single instances of local cortical circuits have been
reconstructed experimentally [4, 10, 11, 12], and their
dynamics and information processing capabilities have
been investigated theoretically [4, 13, 14, 15, 16, 17].
Their architecture is usually represented by a connec-
tivity map specifying the probability for two neurons
to establish a connection. These maps reduce the com-
plicated circuitry to simple relations between cell types.
While this approach neglects higher-order features like
connectivity motifs [18, 19, 20], it enables investigations

of the links between structural principles of local circuits
and their dynamics. While downscaling the numbers
of neurons and synapses distorts dynamical predictions
[21], networks at realistic neuron and synapse counts
provide a means to represent cortical dynamics including
correlations faithfully.

Recent years have seen significant advances in the ap-
plication of electron microscopy (EM) in neuroanatomy
[22]. In particular, the adult networks for both sexes
of Caenorhabditis elegans [23] and large volumes for
Drosophila melanogaster [24, 25] have been fully re-
constructed. In mammals, the wiring diagrams for a
0.0005mm3 volume of mouse barrel cortex layer 4 [26]
and for layer 2/3 pyramidal cells in a 0.003mm3 volume
of mouse primary visual cortex [27] were uncovered. Re-
cently, Sievers et al. [12] obtained the full connectivity of
all neurons in one barrel column of mouse barrel cortex
containing about ten thousand neurons in a volume of
roughly 0.2mm3 of cortical tissue.

Combining advanced EM imagery with novel machine
learning and data processing techniques recently enabled
the reconstruction of local cortical networks in unprece-
dented detail at the cubic millimeter scale for mouse
visual cortex [28] and human temporal cortex [29] han-
dling petabytes of raw data. These reconstructions allow
a more thorough look into the architecture of local corti-
cal circuits beyond single columns than was previously
possible. Due to technical limitations, the resulting con-
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nectomes are not complete: since axons require extensive
manual proofreading, only a fraction of all synapses can
be fully traced back to their source neurons. Conse-
quently, a probabilistic description of connectivity is still
needed.

In this study, we investigate the implications of newly
obtained EM-based reconstructions for cortical modeling.
To this end, we derive a layer-resolved, population-based
connectivity map from the subset of proofread neurons
in a ∼1mm3 EM reconstruction of mouse visual cortex
[28]. As a reference, we compare with a model based
on established light microscopy (LM) data [10] which
we devise according to identical principles. Leveraging
the explanatory power of the balanced random network
paradigm [30, 31], we simulate spiking neural networks
based on the two connectivity maps. Their comparison
explores implications of connectivity structure in the form
of cell-type-specific projection patterns for neuronal activ-
ity. Preliminary results have been presented in abstract
form [32].

2 Results

To construct the microcircuit models, we first need to
estimate the spatial range of local cortical connectivity
between populations. This estimate is used to constrain
the model sizes. Given these sizes, we determine prob-
abilistic connectivity maps describing the local cortical
circuitry. Finally, we perform spiking neural network
simulations of the two models and link their dynamics
back to their structure.

Binzegger et al. [10] estimate connectivity based on
light-microscopic morphological reconstructions of 39 neu-
rons from cat primary visual cortex, using a general-
ized version of Peters’ rule [33, 34]. Supplementing the
data with previously obtained numbers of neurons and
synapses [35, 36], the authors provide estimates for the
numbers of synapses between neurons of various classes.
For inhibitory neurons, the authors mainly focus on bas-
ket cells, leaving a certain fraction of inhibitory synapses
unexplained.

The MICrONS data set [28] contains an EM recon-
struction of ∼1mm3 of mouse visual cortex, consisting
of about 75 thousand neurons and about 500 million
synapses. For this work, we only consider connections
originating from 266 presynaptic neurons with fully re-
constructed and proofread axons.

While the MICrONS data give direct access to actual
neural connections, the data of Binzegger et al. [10] yield
potential connectivity. In the following, we denote the
model based on the MICrONS data set with MEM , and
the model based on the Binzegger data set with MLM .
In the two models, the cortical layers 2/3, 4, 5, and 6
are distinguished (henceforth, we refer to these as L2/3,
L4, L5, and L6). Each layer contains one excitatory (E)
and two inhibitory populations (Ib, Inb) corresponding
to basket and non-basket cells. For the LM data set, we
follow Izhikevich and Edelman [37], assigning unexplained
inhibitory synapses to presynaptic non-basket cells. In

the EM data set, all neurons can be straightforwardly
mapped to one of the populations.

2.1 Spatial connectivity

We estimate the spatial organization of local cortical con-
nections using both the distance-dependent mean num-
ber of synapses and the distance-dependent connection
probability. Here, the connection probability is defined
as the probability that two neurons establish at least
one synapse. The connection probability consequently
neglects the multiplicity of synapses between pairs of
neurons.

We assume an exponential decay of the mean number
of synapses SAB(d) between one presynaptic neuron of
population B and one postsynaptic neuron of population
A with horizontal somatic distance d:

SAB(d) = S0
AB exp

(
− d

λsyn
AB

)
(1)

Here, S0
AB denotes the peak number of synapses, and λsyn

AB

denotes the characteristic length of cortical connectivity
between populations B and A. Taking the density ω(d)
of distances d between pre- and postsynaptic neurons
into account, the density of the expected mean number of
synapses sAB(d) between a single neuron in presynaptic
population B and all neurons in postsynaptic population
A at distance d is ω(d) · SAB(d).

Likewise, we assume an exponential decay of the con-
nection probability with distance d between individual
neurons in the presynaptic population B and postsynap-
tic population A:

pAB(d) = p0AB exp

(
− d

λconn
AB

)
(2)

Here, p0AB denotes the connection probability at zero
distance. pAB(d) is the conditional probability for a
neuron in population B to form at least one synapse
with a particular neuron in population A given that the
horizontal distance of their somata is d.

For MEM , SAB(d) and pAB(d) can straightforwardly
be extracted from the actual connectivity reported in the
EM data. Figure 1a shows example fits of the density
of the mean number of synapses, with resulting spatial
decay constants λsyn

AB displayed in Figure 1A. We here
assume a uniform distribution of neurons to approximate
the true distribution of distances in the reconstructed
volume, avoiding problems arising due to sparse data
for some population pairs. (cf. Section 4.1). Further,
we show example fits for the connection probability in
Figure 1b and spatial decay constants λconn

AB in Figure 1B.
In agreement with the literature, we find that the spa-
tial scales of local excitatory and inhibitory connectivity
at the studied range are generally comparable, with a
tendency for excitatory connection lengths to exceed the
inhibitory ones [39, 40, 41, 19]. Furthermore, we observe
that SAB(d) consistently exhibits smaller characteristic
lengths than pAB(d). Calculating the fraction

cX =
λsyn
A,vX

λconn
A,vX

, X ∈ {E, Ib, Inb} (3)
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Figure 1: Spatial scale of actual and potential connectivity for the mean number of synapses and the
connection probability. A Spatial scale of the mean number of synapses estimated from MICrONS data. Rows
and columns organized according to population (E: excitatory, Ib: inhibitory basket, Inb: inhibitory non-basket) and
cortical layer (2/3, 4, 5, 6). Colors in water tap notation: shades of red indicate excitatory, shades of blue inhibitory
connections. White tiles indicate < 50 synapses. B Spatial scale of the connection probability estimated from EM
data (actual connectivity). Same representation as in A. C Ratios between spatial scales of the mean number of
synapses and the connection probability for actual connectivity from the EM data set. Histogram over all pairs of
populations. D Illustration of calculation of potential connectivity from morphologies based on Peters’ rule. Location
of presynaptic neuron (blue) of population B fixed. Postsynaptic neuron (red) of population A randomly placed in
a box with side length ∆ = 25µm centered at horizontal position of presynaptic and original vertical coordinate of
postsynaptic neuron. Position and rotation around vertical axis sampled n = 100 times (gray dots). Connection
probability defined as m/n where m is the number of samples for which axon and dendrite are sufficiently close (red
circles) at least once. E Spatial scale of the mean number of synapses estimated from data by Stepanyants et al.
[38]. Excitatory-to-excitatory characteristic lengths estimated from connection probabilities and converted using c⋆.
Remaining length scales estimated from expected number of potential synapses. Same color code as in A, B. a,b,e
Example fits showcasing high-quality (left) and low-quality (right) curve fits (see Section S1.1 for overview of fits).
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for all pairs of populations, where v is the layer of the
presynaptic population and X is that population’s cell
type, we observe a consistent average c⋆ = 0.7 (Fig-
ure 1C). Thereby, we can estimate λsyn

AB from λconn
AB , and

vice versa.
ForMLM , data on actual connectivity is not available.

Instead, the spatial scale of the potential connectivity
has been estimated solely based on the morphological
reconstructions [38, 42]: a potential synapse between a
pre- and postsynaptic neuron is registered if their axon
and dendrite are sufficiently close (Figure 1D). With this
approach, the authors estimate both the mean number
of synapses and the connection probability. First, we
assess the consistency of the LM potential connectivity
with that from the EM data set. Using the provided
morphologies, we reproduce the method (Figure 1D) to
obtain an estimate of λconn,pot

AB from potential connec-
tivity. Comparing to the previously derived estimates
from actual connectivity, λconn

AB , we find a good agreement
across most pairs of populations (Figure S5).

Next, we calculate λsyn,pot
AB for all pairs of populations.

In this methodology, we expect that the estimated num-
ber of potential synapses is prone to noise due to multiple
adjacent segments of reconstructed neural processes be-
ing counted as locations of potential synapses. Thus, we
use estimates of the connection probability for the pair-
ings of populations where this information is available
in [38], and then convert λconn,pot

AB to λsyn,pot
AB using c⋆.

For all other pairs of populations, we directly estimate
SAB(d). For pairs of populations with no data in [38], we
make additional generalizing assumptions (Section S1.2).
Example fits of this procedure are shown in Figure 1e,
with the resulting λsyn,pot

AB displayed in Figure 1E.

2.2 Connectivity maps

Because our models MLM and MEM consider distance-
independent mean connection probabilities pAB , the size
of the represented cortical tissue and consequently the
number of neurons and synapses must be fixed to de-
rive the corresponding connectivity maps. To this end,
we distribute neurons with realistic densities for each
model in a template space. Assuming the distance-
dependence of the mean number of synapses Equation 1,
we determine the fraction of model-internal synapses for
each pair of pre- and postsynaptic populations for circu-
lar patches of cortical tissue (Figure 2A). Here, model-
internal synapses refer to incoming synapses originating
from neurons in the model. The model radii r⋆EM and
r⋆LM are then chosen such that the fractions of model-
internal synapses averaged over pre- and postsynaptic
populations are approximately 75% (see Section 4.2),
resulting in r⋆EM = 0.55mm and r⋆LM = 0.75mm.

We observe that MLM has a higher number of neu-
rons in most populations, which is expected due to the
larger size of the model. Turning to connectivity, we ob-
serve that the populations of MLM have a significantly
higher in-degree, i.e., number of incoming connections
per neuron, except for 6Ib (Figure 2B). Consequently, the
connection probabilities between populations are higher

in MLM than in MEM (Figure 2C). Still, common pat-
terns can be identified: both models show an excitatory
sub-circuit between L2/3E and L5E, inhibitory basket
cells project mainly within the same layer, and inhibitory
non-basket cells preferentially target neurons in the same
or higher layers. The main differences can be observed
in the projection pattern of excitatory to inhibitory cells,
as further discussed in Section 2.4.

2.3 Model dynamics

To investigate the dynamical properties of the constructed
models MLM and MEM , we instantiate and simulate
spiking neural networks defined by the derived numbers
of neurons and connectivity maps (see Section 4.3). Neu-
rons are modeled as leaky integrate-and-fire units with
conductance-based synapses using the neural simulation
engine NEST [43]. Excitatory and inhibitory non-basket
cells are modeled as regular-spiking neurons and include
spike-frequency adaptation and relative refractoriness
[44]; inhibitory basket cells, which are PV-expressing, are
fast-spiking neurons and are modeled without adaptation
[45] (see Section 4.3). We constrain the recurrent synap-
tic weights using the data of Avermann et al. [46] for E,
Ib, and Inb neurons of layer 2/3 in rat cortex. While this
choice neglects layer- and species-specific diversity, it re-
duces model complexity. The weights are consistent with
a recently discussed hierarchy of connection strengths
in mouse visual cortex [47] (see Section S1.3). Synaptic
inputs from neurons not contained in the networks are
modeled as excitatory conductance fluctuations in the
form of Ornstein-Uhlenbeck processes with population-
specific mean µA, variance σA, and time scale τA [48,
49]. The extrinsic drive to each neuron is statistically
independent of all other drives. For a detailed model
specification see Section S1.4.

The extrinsic drive to both network models is ad-
justed to approximately satisfy experimentally observed
firing rates [50, 51] using the method suggested by Isbis-
ter et al. [49] (Table 7, Table 8). Concretely, µA and σA

are chosen for each population A such that σA = χµA

with cell-type independent χ. In the resultant state,
the spiking activity of both networks exhibits biologi-
cally plausible characteristics: asynchronous irregular
activity [52, 53] (Figure 3A,B), low firing rates obeying
νIb > νInb > νE in most cases [54, 55, 56] (Figure 3C,F),
broadly distributed coefficients of variation of the inter-
spike intervals [57] (Figure 3D,G), and low synchrony
assessed by co-fluctuations of neural membrane potentials
[58] (Figure 3E,H). The dot displays only include neurons
that spiked at least once in the observation interval, akin
to experimental recordings where silent neurons remain
unobserved.

To systematically investigate the dynamical repertoire
of both models, we perform a parameter scan varying
the mean drives µE and µI to the sets of excitatory and
inhibitory populations. We find that MLM has only
a narrow band of extrinsic drives for which the firing
rates resemble experimentally observed activity: if µI

is too large, the excitatory cells do not fire or have a
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Figure 2: Model construction and connectivity maps. A Sketch illustrating the fraction of intra-model
synapses depending on model size. B Numbers of neurons (top) and in-degrees (bottom) for both models with radii
r⋆EM = 0.55mm and r⋆LM = 0.75mm. The model radii are chosen so that the fraction of model-internal synapses is
approximately 75% averaged over population pairs (Equation 5). For the in-degrees, solid bars indicate the number of
intra-model synapses, while transparent bars (stacked) indicate synapses with presynaptic neurons not contained in
the models. MEM consists of ∼96 thousand neurons and ∼64 million synapses; MLM consists of ∼108 thousand
neurons and ∼455 million synapses. C Mean number of synapses between two arbitrary neurons of given source- and
target populations (same representation as in Figure 1A).

vanishingly small firing rate, and if µE is too large, the
network rapidly transitions to a highly synchronized state
(Figure 4A-E left). In contrast, the activity of MEM

smoothly depends on the extrinsic drive with plausible
firing rates, irregular spiking, and low synchrony across
a large domain of the parameter space (Figure 4A-E
right). Additionally, MEM exhibits the paradoxical effect
[59, 60, 61], where increasing µI decreases the firing
rate of inhibitory basket cells. Note that also for MLM

the inhibitory basket cells reduce their firing rate when
increasing µI for large µE and small µI . We do not
consider this as a paradoxical effect, since for large µE

and small µI , MLM exhibits biologically implausible,
highly synchronized activity, suggesting that in this case,
the reduced inhibitory firing rate is due to a qualitative
change in dynamical state.

2.4 Linking structure and dynamics

What is the structural reason for this discrepancy between
the models? Consider the specificity of projections from
a given source population to excitatory versus inhibitory
neurons in a target layer, which we term target specificity
[14] (cf. Equation 10). The target specificity attains a pos-
itive (negative) value if a projection preferentially targets
excitatory (inhibitory) neurons (Figure 5). For MLM ,
all presynaptic populations have a positive target speci-
ficity. For MEM , a more nuanced picture emerges where
excitatory presynaptic populations preferentially target
inhibitory neurons while there are inhibitory neurons of
both cell types with positive as well as negative target
specificities. This suggests that excitatory neurons that
are more strongly innervated by recurrent connections, as
is the case in MLM , are the origin of pathological dynam-
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Figure 3: Model activity with optimized external
input. Red indicates excitatory, light blue inhibitory
basket, and dark blue inhibitory non-basket populations.
The simulation gathers statistics over 10 s of biological
time starting 0.5 s after simulation onset. A, B Raster
plots (spikes marked as dots) of 50% of neurons that
spiked at least once for the time stretch from 0.5 s to
2.0 s. C–H Population-resolved firing rates ν, coefficients
of variation of the inter-spike interval CVISI (Equation 8),
and synchrony χ (Equation 9).

ics. We test this in MEM by redistributing synapses from
excitatory neurons that previously targeted inhibitory
neurons such that they target excitatory neurons instead.
This procedure conserves the total number of synapses.
When a moderate number of synapses are redistributed,
the target specificity of excitatory neurons becomes bal-
anced (Figure 6A, left). The resulting model retains the
biologically plausible dynamics across a large part of the
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Figure 4: Model activity under variation of extrin-
sic drive. Simulation time of T = 10 s with a simulation
period of Tpre = 0.5 s before data acquisition to avoid
transients due to initial conditions. The mean input
to all excitatory (µE) and inhibitory (µI) neurons is
varied. Arrow at the top of color bars indicates that
higher values are assigned the color of the maximum
value. A-C Population-averaged firing rates of E, Ib,
and Inb neurons. D Population-averaged coefficients of
variation CVISI of the inter-spike interval (Equation 8).
E Population-averaged synchrony χ (Equation 9).

parameter space (Figure 6B-F, left column). Increasing
the number of synapses that are redistributed until the
target specificity of excitatory neurons resembles that
of MLM (Figure 6A, right), MEM shows qualitatively
similar dynamics to MLM (Figure 6B-F, right column):

6

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 3, 2024. ; https://doi.org/10.1101/2024.10.03.616539doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.03.616539
http://creativecommons.org/licenses/by-nc-nd/4.0/


L6

L5

L4

L2/3

-1.0

-0.5

0.0

0.5

1.0

ta
rg

et
 s

pe
ci

fic
ity

L2
/3

E
L4

E
L5

E
L6

E

L6

L5

L4

L2/3

ta
rg

et
 la

ye
r

L2
/3

Ib
L4

Ib
L5

Ib
L6

Ib

source population
L2

/3
Inb

L4
Inb

L5
Inb

L6
Inb

LM

EM

Figure 5: Target specificity for both network mod-
els. Positive values indicate a preferential targeting of
excitatory neurons in a layer by a given source popula-
tion; negative values indicate preference for inhibitory
targets.

for excitatory neurons, the transition between the firing
regime at large µE and small µI and that at smaller µE

and large µI becomes more abrupt. Further, the paradox-
ical effect in the activity of inhibitory neurons becomes
less pronounced. Finally, the increased target specificity
results in highly synchronous activity for a larger portion
of the parameter space.

Thus, the biologically implausible activity of MLM

can in part be explained by the underlying positive target
specificity, which in turn stems from the assumptions of
the reconstruction of the local cortical circuit.

3 Discussion

In the present work, we revisit local cortical microcir-
cuit architectures. Based on two reconstruction tech-
niques—light microscopy (LM) and electron microscopy
(EM)—we compare cortical connectivity and study impli-
cations for cortical dynamics using spiking neural network
models. Our results show that strong recurrent innerva-
tion of excitatory neurons leads to pathological dynamics
in the LM-based model. Consequently, the LM-based
connectivity needs to be modified to allow for biologically
plausible activity over a wide range of input parameters.
Conversely, the EM-based model exhibits balanced, bio-
logically plausible activity for a wide range of extrinsic
drives without the need for further modifications. This
can be understood in terms of the target specificity: exci-
tatory neurons preferentially target inhibitory ones, while
inhibitory neurons have a diverse targeting pattern.

Such layer-specific projection patterns are in agree-
ment with the study by Potjans and Diesmann [14] who
amended connectivity derived from Binzegger et al. [10]
with physiological connectivity data from several species
and cortical areas, motivated by a discrepancy in target
specificity between data sources (see their Figures 4 and
S3). This reorganization leads to a stronger targeting of
inhibitory neurons in certain layers by excitatory neu-
rons, which is essential for asynchronous and irregular
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Figure 6: Effect of increased target specificity in
MEM . Parameter α ∈ [0, 1] linearly controls redistribu-
tion of synapses onto excitatory neurons leading to an
increase in target specificity (cf. Section 4.5). α = 0
corresponds to the original model, α = 1 implies that all
synapses target excitatory neurons. Color code in top
panels as in Figure 5, in bottom panels as in Figure 4.

activity with realistic firing rates. Our results confirm
the hypothesized negative target specificity of especially
excitatory projections using reconstructions from a single
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brain.

3.1 Modeling paradigm

The approach to modeling neural circuits employed here
rests on the seminal insights from balanced random net-
works [30, 31, 62]. These networks have since been ex-
tended to multiple populations taking into account bio-
logical details such as the cell-type specific organization
of cortex [14, 63], multiple inhibitory populations [63,
64, 65], or morphologically detailed neuron models [15,
49] to study cortical dynamics and function. Here, for
the first time, we present a random network model con-
strained by EM-based connectivity data. While derived
from a specific connectome, the obtained probabilistic
connectivity rules represent the general connectivity of
a template mouse visual cortex and allow for efficient
instantiations of neural network models in distributed
computers [66]. As such, they are amendable by fu-
ture EM reconstructions and provide a starting point for
generic cortex modeling. Using the derived characteristic
spatial extents of connectivity, the model can be pro-
moted to a spatially organized network that is scalable
to sizes beyond the local cortical circuit. Such networks
exhibit rich dynamics across space [67, 68, 69] and enable
investigations of, for example, activity and function in
visual cortical areas [16, 17, 70].

Alternatively, bio-realistic modeling can be based on
the specific, completely reconstructed circuitry of one
animal. In terms of mammalian local circuits spanning
all layers, these data are only available for one column of
mouse barrel cortex [12]. Advanced laboratories combine
physiological measurements of the activity of a piece of
tissue with a subsequent EM reconstruction, allowing for
self-consistent investigations of the relationship between
the structure, dynamics, and function in a particular
brain (e.g. MICrONS Consortium et al. [28]). In contrast,
the abstractions employed in the probabilistic approach
put forward here expose principles of cortical architecture
and processing.

3.2 Spatial decay of connection probabil-
ity and mean number of synapses

Different spatial scales of local cortical connectivity in
mouse visual cortex and cat V1 (Figure 1A, E) are not
surprising given interspecies differences. However, also
the methodologies used to determine the decay of connec-
tion probability with distance differ between the data sets.
While LM data only allow estimating the potential con-
nectivity, the EM data allow deriving the spatial extent
of actual connectivity based on established synapses and
accurate neuron positions as well as potential connectiv-
ity from the provided morphologies. Comparing the two
methodologies for deriving the distance-dependent con-
nection probabilities from the EM data set (Figure S5),
we find a general agreement between the estimates of
characteristic length scales.

Further, using the detailed information provided by
the EM data, we compare the spatial decay of connection

probability to that of the mean number of synapses. For
both quantities, we assume an exponential decay with
distance, which provides accurate estimates for a wide
range of pre- and postsynaptic pairs of populations (Fig-
ure S1, Figure S2). We show that the mean number
of synapses exhibits a decay with a consistently shorter
characteristic length for all considered pairs of popula-
tions (Figure 1C). The reason for this difference may be
that synapses between a given pair of neurons ‘beget‘
more synapses, leading to long-tailed distributions of
synaptic multiplicity [71]. Numbers of neuron pairs with
high synaptic multiplicity would then fall off faster with
distance than numbers of neuron pairs with low synaptic
multiplicity, causing the observed difference in spatial de-
cay between connection probability and the mean number
of synapses.

The exponential model for the connection probabil-
ity with distance (Equation 2) is in agreement with the
experimental data as well (Figure S3). For distances
above about 100µm, Markov et al. [72] suggest an ex-
ponential decay for the fraction of labeled neurons from
retrograde tracing. This finding is consistent with our
results, whether fractions of labeled neurons are more
reflective of numbers of synapses or of connection prob-
abilities, since both follow an exponential decay with
distance.

3.3 Target specificity controls dynamical
repertoire

Instantiating and simulating spiking neural network mod-
els based on the derived connectivity maps and spatial
scales, we find that both the EM- and LM-based mod-
els can exhibit biologically plausible activity (Figure 3).
However, varying the background drive to excitatory and
inhibitory populations systematically reveals that MLM

only behaves in a biologically plausible way for a nar-
row band of the parameter space: the model is prone to
completely silent excitatory populations or network-wide
strong, pathological oscillations. In contrast, MEM is
well-behaved across a wider range of drive parameters,
a necessary prerequisite for robust cortical computation.
Furthermore, MEM reproduces the experimentally ob-
served paradoxical effect for inhibitory neurons [60].

The differences in dynamical behavior between the
two models are explained by cell-type-specific targeting
patterns. Our results indicate that a strong preference
of excitatory populations for targeting excitatory pop-
ulations leads to biologically implausible activity: for
MLM , the aforementioned targeting pattern is observed
(Figure 5); redistributing synapses in MEM to match the
targeting pattern of MLM leads to qualitatively similar
dynamics (Figure 6).

3.4 Conclusion

In this work, we provide openly accessible connectiv-
ity maps and models of the cortical microcircuit based
on established LM and recent EM reconstructions. As
such, the obtained maps and models provide platforms
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for future modeling studies of local cortical networks.
Possible extensions include taking into account more de-
tailed single-neuron parameters and connection weights,
multapse distributions, higher-order connectivity motifs,
distance-dependent connectivity, functionally specific ex-
ternal input, neuronal morphologies, and functional prop-
erties such as plasticity.

Both models, MLM and MEM , reduce the intricate
morphology and complex response patterns of nerve cells
to leaky integrate-and-fire point neuron models with
conductance-based synapses and, in the case of excitatory
cells and inhibitory non-basket cells, two adaptation cur-
rents. Given this level of description, the EM-based model
outperforms the LM-based model in terms of biological
plausibility of the emerging activity due to differences in
cell-type-specific targeting patterns. This suggests that
the EM-based connectivity is to be preferred as a starting
point in future modeling of local cortical circuits. Our
study confirms by the analysis of direct anatomical mea-
surements the prediction of the existence of a negative
target specificity of excitatory projections realized in the
microcircuit model of Potjans and Diesmann [14].

4 Methods

4.1 Spatial connectivity

To obtain estimates for the characteristic lengths of local
cortical connectivity, we assume an exponential decay
for the mean number of synapses with lateral distance
between somata (Equation 1). The EM reconstruction
allows for determining the density of the mean number
of actual synapses sAB(d) between a single presynaptic
proofread neuron and all postsynaptic neurons at inter-
somatic distance d for pairs of the considered cell types.
Using the distribution of uniformly sampled points in
a rectangle with distance d [73], we approximate the
number of potential postsynaptic partners ω(d) given the
dimensions of the reconstructed volume. We then fit

sAB(d) = S0
AB · ω(d) · exp (−d/λsyn

AB) (4)

to obtain λAB between presynaptic population B and
postsynaptic population A.

Additionally, we estimate the distance-dependent con-
nection probability, i.e., the probability of establishing at
least one synapse. We define the connection probability
pAB(d1, d2) between a presynaptic neuron of population
B and a postsynaptic neuron of population A that have
a horizontal inter-somatic distance d with d1 ≤ d ≤ d2
as the number of connected neuron pairs divided by the
total number of neuron pairs in the same range of dis-
tances. Here, the total number of neuron pairs is given
by the product of the number of neurons of populations
A and B within the range of distances. We also assume
an exponential decay for the continuous pAB(d), albeit
with a different characteristic length scale (Equation 2).

The quantity c⋆ = ⟨ λsyn
AB

λconn
AB

⟩AB measures the discrepancy

between the distance dependence of the mean number

of synapses and the connection probability based on the
EM data set.

For the LM data set, Stepanyants et al. [38] derive
the connection probability using potential connectivity,
defined as the probability that a source and target neuron
of given cell types at inter-somatic distance d form at
least one synapse based on morphological reconstructions
of single neurons. This connection probability is given for
a subset of pairs of populations. For these, we again fit
Equation 2, which we convert to an estimate of the char-
acteristic length of the mean number of synapses λsyn

AB

using c⋆. For a different subset of pairs of populations,
Stepanyants et al. [38] derive the distance-dependent
mean number of synapses SAB(d) under further assump-
tions, which we fit using Equation 1 to also obtain λsyn

AB .
These fits are displayed in Figure S4. Finally, for pairs of
populations in our model where Stepanyants et al. [38]
provide neither of the two quantities, we generalize from
the existing estimates as detailed in Section S1.2.

Further, we assess the consistency of the LM potential
connectivity with the potential and actual connectivity
from the EM data. For this, we use the same morphology-
based ansatz to derive a connection probability based on
potential connectivity from the EM data. Compared to
[38], we use more single-cell reconstructions (266 com-
pared to 41), and fewer cell positions within each box
(100 compared to 1000). Then, we compare the resulting
length scales of spatial connectivity with estimates from
the actual connectivity derived above. For the EM data
set, the two methodologies result in estimates of λconn

AB

that are comparable across all pairs of populations.
In all cases, scipy.optimize.curve fit [74] per-

forms non-linear least-squares fits using the Levenberg-
Marquardt algorithm [75].

4.2 Connectivity maps

To constrain the size of the models, we calculate

F (r) = ⟨FAB(r)⟩AB =

〈
Sint,≤r
AB

Stotal,≤r
AB

〉
, (5)

the fraction of intra-model synapses for a circular patch
of cortex with radius r. To determine the expected num-
ber of synapses from population B to population A of
neurons within a circular patch with radius r, Sint,≤r

AB , we
uniformly distribute neurons with realistic densities in
the patch and calculate the number of synapses according
to Equation 1. Similarly, the total number of synapses
between the populations, Stotal,≤r

AB , is determined by in-
creasing the sampling radius of the presynaptic popu-
lation to 3r. The model radius r⋆ for both models is
determined so that F (r⋆) ≈ 75%.

We calculate the number of synapses between popu-
lations A and B internal to the model as

Sint
AB = πr⋆2 · ρSAB · FAB(r

⋆) ,

where ρSAB is the density of synapses from populationB to
population A extracted from the respective data set, and
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finally the distance-independent connection probability
between a neuron in presynaptic population B and a
neuron in postsynaptic population A as

pAB =
Sint
AB

NANB

where NA, NB are the number of neurons in populations
A and B, respectively.

Population pairs having insufficient data to constrain
the characteristic length scales (cf. S2) are neglected
in determining the model sizes, but they are neverthe-
less connected according to the (scaled) total number of
synapses in the respective data sets. Thus, also popula-
tions without a fitted length scale are connected, unless
the corresponding number of reported synapses is zero.

4.3 Network model and single-neuron dy-
namics

Using the derived connectivity maps we instantiate net-
work graphs for the two models using a pairwise Bernoulli
connection rule with source- and target-population-specific
connection probabilities pAB (see the user-level documen-
tation of NEST for an ontology based on [76]). The
resulting networks are directed versions of Erdős-Rényi
graphs [77].

Single neurons are modeled as leaky integrate-and-fire
units with conductance-based synapses. The membrane
potential for units representing inhibitory basket cells
evolves as

CmV̇m =− gL (Vm − EL)− (gex + gext) (Vm − Eex)

− gin (Vm − Ein) (6)

with the membrane capacitance Cm, leak conductance gL
and reversal potentials EL, Eex, Ein. The conductances
obey

τex ˙gex(t) = −gex(t) + τex
∑
j

wj

∑
tj

δ(t− tj − dj)

τin ˙gin(t) = −gin(t) + τin
∑
k

wk

∑
tk

δ(t− tk − dk)

τext ˙gext(t) = −(gext(t)− µ) + σ
√
2τextη(t) ,

where j (k) is a presynaptic neuron, tj (tk) its spike
times, wj (wk) the weight on a target neuron, dj (dk)
is the connection delay, τex, τin are the synaptic time
constants, µ is the mean and σ the standard deviation
of the extrinsic drive modeled as an Ornstein-Uhlenbeck
process (η denotes white noise), and τext its timescale.
The timescales of response conductances and the extrinsic
conductance modulation can differ since the latter entails
slower fluctuations from the not explicitly modeled neural
tissue. For all simulations, we fix σ/µ = ξ = 0.2 [48] while
the mean varies between populations and experiments. If
Vm crosses the threshold Vth at time t′, the unit emits a
spike with this time-stamp, is reset to Vreset, and is kept
at this value for τref . Units representing excitatory cells or
inhibitory non-basket cells have additional currents that

implement spike-frequency adaptation (a) and relative
refractoriness (rr):

CmV̇m = −gL (Vm − EL)− (gex + gext) (Vm − Eex)

− gin (Vm − Ein)− ga (Vm − Ea)− grr (Vm − Err) . (7)

The corresponding conductances evolve according to

τaġa(t) = −ga(t) + τa
∑
ti

δ(t− ti)

τrr ˙grr(t) = −grr(t) + τrr
∑
ti

δ(t− ti)

where ti are the timings of the spikes emitted by the
units.

The neuron models used in this study are specified
using NESTML [78]. The state of the neurons (Equation 6,
Equation 7) is integrated with an embedded Runge-Kutta-
Fehlberg 4(5) method [79]. The Langevin equation de-
scribing the extrinsic drive is integrated using an exact
scheme [80, 81].

4.4 Analysis of dynamical data

The firing rates are determined for each neuron by count-
ing the spikes and dividing by the observation time. Co-
efficients of variation of the inter-spike intervals (ISIs) for
each neuron are given by

CVISI =
standard deviation of ISIs

mean of ISIs
. (8)

Both quantities are calculated using the Electrophysiol-
ogy Analysis Toolkit (elephant[82]). To determine the
synchrony χ of each population, we record the membrane
potential of 50 neurons per population and calculate

χ2 =

〈(
⟨Vm⟩i − ⟨Vm⟩i,T

)2
〉

T〈
(Vm − ⟨Vm⟩T )

2
〉
i,T

(9)

where ⟨...⟩i denotes the average over the neurons in one
population, and ⟨...⟩T denotes the time average.

4.5 Target specificity

For a presynaptic population B and a layer v, the target
specificity is given by

TSv,B =
pvE,B − pvIb,B − pvInb,B
pvE,B + pvIb,B + pvInb,B

∈ [−1, 1] . (10)

A positive (negative) value indicates that B preferentially
targets excitatory (inhibitory) neurons in layer v.

We redistribute synapses between populations to in-
crease the value of the target specificity using a control
parameter α ∈ [0, 1] while keeping the total number of
synapses fixed. On the level of the mean number of
synapses, this amounts to:

Sint,α
uIb,vE = (1− α) · Sint

uIb,vE

Sint,α
uInb,vE = (1− α) · Sint

uInb,vE

Sint,α
uE,vE = SvE,vE + Sint

uIb,vE + Sint
vInb,vE

10

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 3, 2024. ; https://doi.org/10.1101/2024.10.03.616539doi: bioRxiv preprint 

https://nest-simulator.readthedocs.io/en/v3.7/synapses/connectivity_concepts.html#pairwise-bernoulli
https://nest-simulator.readthedocs.io/en/v3.7/synapses/connectivity_concepts.html#pairwise-bernoulli
https://doi.org/10.1101/2024.10.03.616539
http://creativecommons.org/licenses/by-nc-nd/4.0/


This definition implies that α = 0 leaves the connectivity
maps (and thus the target specificity values) unchanged,
while for α = 1 all synapses exclusively target excitatory
populations (TS = 1).

Code and data availability

The data and code to reproduce the results are openly
available on Zenodo (https://doi.org/10.5281/
zenodo.13886620).
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putation grant JINB33).

References

[1] K. Brodmann. Vergleichende Lokalisationslehre der
Großhirnrinde in ihren Prinzipien dargestellt auf
Grund des Zellenbaues. Leipzig: Johann Ambrosius
Barth, 1909.

[2] K. Zilles and K. Amunts. “Architecture of the Cere-
bral Cortex”. In: The Human Nervous System. Ed.
by J. K. Mai and G. Paxinos. Third Edition. San
Diego: Academic Press, 2012, pp. 836–895.

[3] V. B. Mountcastle. “Modality and topographic
properties of single neurons in cat’s somatic sensory
cortex”. Journal of Neurophysiology 20.4 (1957),
pp. 408–434.

[4] R. J. Douglas, K. A. C. Martin, and D. Whitteridge.
“A Canonical Microcircuit for Neocortex”. Neural
Computation 1.4 (1989), pp. 480–488.

[5] R. J. Douglas and K. A. C. Martin. “Neuronal
Circuits of the Neocortex”. Annual Review of Neu-
roscience 27 (2004), pp. 419–451.

[6] J. C. Horton and D. L. Adams. “The cortical col-
umn: a structure without a function”. Philosophi-
cal Transactions of the Royal Society B 360.1456
(2005), pp. 837–862.

[7] N. M. M. Da Costa and K. Martin. “Whose cortical
column would that be?” Frontiers in Neuroanatomy
4 (2010), p. 1265.

[8] S. Herculano-Houzel, C. Watson, and G. Paxinos.
“Distribution of neurons in functional areas of the
mouse cerebral cortex reveals quantitatively differ-
ent cortical zones.” Frontiers in Neuroanatomy 7
(2013), p. 35.

[9] C. E. Collins et al. “Neuron densities vary across
and within cortical areas in primates”. Proceedings
of the National Academy of Sciences of the United
States of America 107.36 (2010), pp. 15927–15932.

[10] T. Binzegger, R. J. Douglas, and K. A. C. Mar-
tin. “A Quantitative Map of the Circuit of Cat
Primary Visual Cortex”. Journal of Neuroscience
39.24 (2004), pp. 8441–8453.

[11] C. Y. C. Chou et al. “Principles of visual cortex ex-
citatory microcircuit organization”. bioRxiv (2023),
pp. 2023–12.

[12] M. Sievers et al. “Connectomic reconstruction of a
cortical column”. BioRxiv (2024), pp. 2024–03.

[13] S. Haeusler and W. Maass. “A statistical analysis of
information-processing properties of lamina-specific
cortical microcircuit models.” Cerebral Cortex 17.1
(2007), pp. 149–162.

[14] T. C. Potjans and M. Diesmann. “The Cell-Type
Specific Cortical Microcircuit: Relating Structure
and Activity in a Full-Scale Spiking Network Model”.
Cerebral Cortex 24.3 (2014), pp. 785–806.

[15] H. Markram et al. “Reconstruction and simulation
of neocortical microcircuitry”. Cell 163.2 (2015),
pp. 456–492.
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[75] J. J. Moré. “The Levenberg-Marquardt algorithm:
implementation and theory”. In: Numerical anal-
ysis: proceedings of the biennial Conference held
at Dundee, June 28–July 1, 1977. Springer. 2006,
pp. 105–116.

[76] J. Senk et al. “Connectivity Concepts in Neuronal
Network Modeling”. PLOS Computational Biology
18.9 (2022), e1010086.
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S1 Supplementary materials

S1.1 Population-specific characteristic lengths

We fit an exponential decay of the mean number of synapses using Equation 1 and the connection probability
using Equation 2 to the actual and potential connectivity derived from EM data to obtain the population-specific
characteristic lengths λAB . Figure S5 compares the length scale of the connection probability obtained from actual
and potential connectivity. We find that the two methods produce similar estimates:

γX =
λconn
A,vX

λconn,pot
A,vX

≈ 1 ∀v,X (11)

where v is the layer and X is the cell type of the presynaptic population.
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Figure S1: Density of mean number of synapses between pre- and postsynaptic populations from EM
data, actual connectivity. Purple dots indicate experimentally observed number of connections at distance d,
purple curves are fits to the expected number of connections given the density of the mean number of synapses of one
presynaptic neuron with all possible partners from the postsynaptic population at distance d (Equation 4). No fits for
combinations of populations where the observed number of synapses is smaller than 50.
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Figure S2: Connection probability between pre- and postsynaptic populations from EM data, actual
connectivity. Purple dots indicate experimentally observed connection probability at distance d, purple curves are
fits to the expected connection probability (Equation 2). No fits for combinations of populations where the observed
number of connections is smaller than 50.
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Figure S3: Connection probability between pre- and postsynaptic populations from EM data, potential
connectivity. Purple dots indicate connection probability at distance d, purple curves are fits to the expected
connection probability (Equation 2).
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Figure S4: Potential connectivity between pre- and postsynaptic populations from LM data. Source
population horizontal, target population vertical. Panels show potential connectivity (vertical) at a lateral displacement
d as orange dots. Orange curves are fits to the connection probability according to Equation 2 for E-to-E connections,
and mean number of synapses according to Equation 1 for all other types of connections.
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Figure S5: Comparison of the length scales of connection probability derived from actual and potential
connectivity of EM data. A Characteristic length scale λconn

AB derived from actual connectivity. B Characteristic
length scale λconn,pot

AB derived from potential connectivity. C Fraction of length scales γX = λconn
A,vX/λconn,pot

A,vX where
X ∈ {E, Ib, Inb}.
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S1.2 Characteristic lengths for MLM

Since the data of Stepanyants et al. [1] do not have the required resolution for the derivation in Section 2.2, we
generalize the missing values from the estimated λsyn

AB . For inhibitory source populations, we choose

λsyn
5Ib,4Ib = λsyn

5E,4Ib (12)

λsyn
6Ib,4Ib = λsyn

6E,4Ib (13)

λsyn
A,vIb = λsyn

A,4Ib (14)

where A represents any target population, and v represents any source layer. Since Stepanyants et al. [1] only provide
data for inhibitory basket cells, we use the same characteristic length scales also for inhibitory non-basket cells.

For excitatory source populations, we choose

λsyn
uIb,vE = λsyn

uE,vE (15)

for all source layers except v = 6 since data for this layer is lacking. There, we choose

λsyn
A,6E = λsyn

A,5E , (16)

see Table 1.

Characteristic lengths λsyn
AB of the mean number of synapses

Target population Source population
2/3E 2/3Ib 4E 4Ib 5E 5Ib 6E 6Ib

2/3E 171 µm 146 µm 171µm 146 µm 216 µm 146 µm 216 µm 146 µm
2/3Ib 171 µm 160 µm 179µm 160 µm 216 µm 160 µm 216 µm 160 µm
4E 115 µm 131 µm 136µm 131 µm 173 µm 131 µm 173 µm 131 µm
4Ib 115 µm 124 µm 134µm 124 µm 173 µm 124 µm 173 µm 124 µm
5E 129 µm 117 µm 123µm 117 µm 154 µm 117 µm 154 µm 117 µm
5Ib 129 µm 117 µm 123µm 117 µm 154 µm 117 µm 154 µm 117 µm
6E 103 µm 120 µm 123µm 120 µm 132 µm 120 µm 132 µm 120 µm
6Ib 102 µm 120 µm 123µm 120 µm 132 µm 120 µm 132 µm 120 µm

Table 1: Characteristic lengths λsyn
AB of the mean number of synapses for model MLM . Green values are estimated

directly from Stepanyants et al. [1], black values are generalized from these estimates.

S1.3 Connection strengths

We follow Kraynyukova et al. [2] in defining the connection strength Jv
XY in a layer v from neurons of population vY

to vX as
Jv
XY = average in-degree to single neuron in vX from vY × corresponding PSP.

To compare our results with theirs, we only consider inhibitory basket cell populations and discard populations of
inhibitory non-basket cells. We find that the weights chosen in the present work (c.f. Section 2.3) satisfy the hierarchy
of connection strengths found in Kraynyukova et al. [2] (called connectivity weights in their study) in most cases.
Additionally, we display the synaptic weights (assessed by unitary PSPs) used in Kraynyukova et al. [2] originating
from previous measurements (their reference Allen Institute for Brain Science, 2019). For these synaptic weights, the
hierarchy is satisfied for the EM model in all cases except L6 EI-EE (Figure S7, lower left panel). This is consistent
with their findings using connection probabilities in mouse V1 obtained by electrophysiological means (their Figure 4).
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Figure S6: Connection strengths for MEM . Layer- and population-pair-resolved connection strengths when
systematically varying the PSP of presynaptic populations. On the horizontal (vertical) axis, the PSP of presynaptic
populations with putatively smaller (larger) connection strengths is varied. Weights chosen in this work marked in
orange, weights by the Allen Institute marked in white. Green (purple) indicates that the inequality given in the
column title is fulfilled (unfulfilled) and therefore a hierarchy of connection strengths exists (does not exist).
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Figure S7: Connection strengths for MLM . Same layout and color scheme as in Figure S6.
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S1.4 Tables summarizing model definitions

The network architecture and the list of parameters are summarized in the style of Nordlie et al. [3]. Table 2
summarizes the models, Table 3 specifies neuron and synapses models, Table 4, Table 5, and Table 6 give the numeric
values used in the simulations.

Structure Multi-layer network of excitatory, inhibitory basket and non-basket neurons
Populations 12 cortical populations in 4 layers (L2/3, L4, L5, L6),

populations vY for all v in layers, Y ∈ {E, Ib, Inb}
Measurements Spikes and membrane potential of neurons in all populations
Neuron Model Leaky integrate-and-fire neurons, E and Inb neurons with adaptation
Synapse Model Conductance-based synapses with exponentially shaped kernel
Network Model Pairwise Bernoulli connectivity rule
External Drive Modulations of excitatory conductances with an Ornstein-Uhlenbeck process

Table 2: Model summaries for MLM and MEM
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Neuron and synapse model for excitatory and inhibitory non-basket cells

Sub-threshold dynamics CmV̇m = −gL (Vm − EL)− (gex + gext) (Vm − Eex)− gin (Vm − Ein)
−ga (Vm − Ea)− grr (Vm − Err)

τex ˙gex(t) = −gex(t) + τex
∑

j wj

∑
tj
δ(t− tj − dj)

τin ˙gin(t) = −gin(t) + τin
∑

k wk

∑
tk
δ(t− tk − dk)

τaġa(t) = −ga(t) + τa
∑

ti
δ(t− ti)

τrrġa(t) = −grr(t) + τrr
∑

ti
δ(t− ti)

where ti is the timing of the spike emitted by the neuron.
Spiking If V (t−) < Vth and V (t+) ≥ Vth:

1. Set t∗ = t and V (t) = Vreset in (t∗, t∗ + τr].
2. Emit spike with time stamp t∗.

Neuron and synapse model for inhibitory basket cells

Sub-threshold dynamics CmV̇m = −gL (Vm − EL)− (gex + gext) (Vm − Eex)− gin (Vm − Ein)
τex ˙gex(t) = −gex(t) + τex

∑
j wj

∑
tj
δ(t− tj − dj)

τin ˙gin(t) = −gin(t) + τin
∑

k wk

∑
tk
δ(t− tk − dk)

Spiking If V (t−) < Vth and V (t+) ≥ Vth:
1. Set t∗ = t and V (t) = Vreset in (t∗, t∗ + τr].
2. Emit spike with time stamp t∗.

Computation time step
Time resolution dt = 0.1ms

Synaptic delays
Delay Synaptic delay is exponentially distributed with a mean

depending on the pre- and postsynaptic cell type.
The minimal synaptic delay equals dt.

Synaptic weights
Weights Synaptic weights are lognormally distributed with a fixed

relative (to the mean) standard deviation and the mean
depending on the pre- and postsynaptic cell type.

Stimulation

External drive τext ˙gext(t) = −(gext(t)− µ) + σ
√
2τextη(t)

where η denotes white noise, µ and σ are population-specific.

Table 3: Neuron and synapse models used for spiking neural network simulations of both MLM and MEM .
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Parameter Value Description
Neuron parameters: excitatory neurons

Cm 250 pF Membrane capacitance
tref 2ms Refractory period
τex 2ms Excitatory synaptic time constant
τin 5ms Inhibitory synaptic time constant
τX 10ms Time constant of Ornstein-Uhlenbeck noise
gL 16.7 nS Leak conductance
EL −70mV Resting potential
Ein −75mV Inhibitory reversal potential
Eex 0mV Excitatory reversal potential
Vth −50mV Threshold
Vreset −60mV Reset membrane potential
Vm −60mV Initial membrane potential

Neuron parameters: inhibitory basket neurons
Cm 250 pF Membrane capacitance
tref 4ms Refractory period
τex 2ms Excitatory synaptic time constant
τin 5ms Inhibitory synaptic time constant
τX 10ms Time constant of Ornstein-Uhlenbeck noise
gL 16.7 nS Leak conductance
EL −70mV Resting potential
Ein −75mV Inhibitory reversal potential
Eex 0mV Excitatory reversal potential
Vth −50mV Threshold
Vreset −60mV Reset membrane potential
Vm −60mV Initial membrane potential

Neuron parameters: inhibitory non-basket neurons
Cm 250 pF Membrane capacitance
tref 4ms Refractory period
τex 2ms Excitatory synaptic time constant
τin 5ms Inhibitory synaptic time constant
τX 10ms Time constant of Ornstein-Uhlenbeck noise
gL 16.7 nS Leak conductance
EL −65mV Resting potential
Ein −75mV Inhibitory reversal potential
Eex 0mV Excitatory reversal potential
Vth −50mV Threshold
Vreset −60mV Reset membrane potential
Vm −60mV Initial membrane potential

Adaptation parameters
qsfa 14.48 nS Quantal spike-frequency adaptation conductance increase
qrr 3214 nS Quantal relative refractory conductance increase
τsfa 110ms Time constant of spike-frequency adaptation
τrr 1.97ms Time constant of relative refractoriness
Esfa −70mV Spike-frequency reversal potential
Err −70mV Relative refractory reversal potential

Table 4: Neuron parameters for both MLM and MEM .
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Mean delay
Target cell type Source cell type

E Ib Inb
E 2ms 0.8ms 1.5ms
Ib 1.2ms 1.5ms 1.5ms
Inb 1.5ms 1.2ms 1.5ms

Table 5: Mean delays between populations of given cell types for both MLM and MEM . Numerical values inspired
by measurements from Avermann et al. [4].

Mean connection weights
Target cell type Source cell type

E Ib Inb
E 0.4 nS 4.7 nS 4.0 nS
Ib 0.8 nS 4.7 nS 3.2 nS
Inb 0.4 nS 6.5 nS 4.0 nS

Table 6: Mean connection weights between populations of given cell type for both MLM and MEM . Numerical values
inspired by measurements from Avermann et al. [4]. Relative standard deviation of weights equals 0.5.

µX for MLM

Layer Cell type
E Ib Inb

L2/3 6.34 nS 6.79 nS 5.78 nS
L4 8.07 nS 6.67 nS 5.57 nS
L5 6.79 nS 5.61 nS 5.66 nS
L6 8.00 nS 9.12 nS 8.22 nS

Table 7: Mean of conductance fluctuations modeled as OU processes providing external drive for the tuned MLM

network.

µX for MEM

Layer Cell type
E Ib Inb

L2/3 7.29 nS 6.55 nS 4.50 nS
L4 7.85 nS 8.45 nS 5.72 nS
L5 11.98 nS 11.54 nS 7.58 nS
L6 5.60 nS 5.45 nS 3.94 nS

Table 8: Mean of conductance fluctuations modeled as OU processes providing external drive for the tuned MEM

network.
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