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A B S T R A C T

Optimization-based frameworks for energy system modeling such as TIMES, ETHOS.FINE, or PyPSA have
emerged as important tools to outline a cost-efficient energy transition. Consequently, numerous reviews have
compared the capabilities and application cases of established energy system optimization frameworks with
respect to their model features or adaptability but widely neglect the frameworks’ underlying mathematical
structure. This limits their added value for users who not only want to use models but also program them
themselves.

To address this issue, we follow a hybrid approach by not only reviewing 63 optimization-based frameworks
for energy system modeling with a focus on their mathematical implementation but also conducting a
meta-review of 68 existing literature reviews.

Our work reveals that the basic concept of network-based energy flow optimization has remained the
same since the earliest publications in the 1970s. Thereby, the number of open-source available optimization
frameworks for energy system modeling has more than doubled in the last ten years, mainly driven by the
uptake of energy transition and progress in computer-aided optimization.

To go beyond a qualitative discussion, we also define the mathematical formulation for a mixed-integer
optimization model comprising all the model features discussed in this work. We thereby aim to facilitate the
implementation of future object-oriented frameworks and to increase the comprehensibility of existing ones
for energy system modelers.
1. Introduction

Energy system models are as diverse as their real-world counter-
parts, which is why dozens of reviews have been published over the last
two decades in an attempt to categorize and compare them. Given the
need for continuous adaptation of these models, the growing number
of energy system models is accompanied by the development of object-
oriented software tools that facilitate the setup of concrete model
instances, so-called frameworks.

∗ Corresponding author.
E-mail address: max.hoffmann@fz-juelich.de (M. Hoffmann).

Frameworks for energy system modeling provide a mathematical
structure that allows the quick creation of model instances by means of
parameterization. In recent years, they have occasionally been subject
to their own reviews (see, e.g., [1]), but hitherto none of these has
provided information on their underlying mathematical formulations.
Consequently, they do not provide answers on how to set up modeling
frameworks and how to model their specific features.
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We address this shortcoming by reviewing 63 optimization-based
frameworks for energy system modeling, defining common model di-
mensions, the concept of technological component classes, the provi-
sion of basic model features such as variables, constraints, and objective
functions, and, among others, techniques to mitigate computational
complexity issues. We focus on open-source linear and mixed-integer
linear optimization frameworks in order to allow for comparability and
the derivation of a basic mathematical model as the frameworks’ largest
common denominator. Thus, our work sets itself apart from previous
work by not only comparing energy system modeling frameworks but
also focusing on their mathematical foundations. While earlier reviews
typically assessed frameworks based on their features and adaptability,
this paper takes a step further by examining the mathematical struc-
tures, specifically mixed-integer linear programming formulations that
drive these models. Additionally, by formulating a set of standardized
mathematical formulations, we provide a practical tool for modelers
looking to develop or refine their own frameworks. This combined
approach offers a more in-depth and technically oriented perspective,
making our study a valuable contribution for both users and developers
of energy system models and potentially the first review to enable
programmers to set up their own energy system optimizations.

The remainder of this work is structured as follows:
We first present the methodology of our review as well as the

meta-data of the analyzed frameworks in Section 1.1, followed by a
meta-review of works that have already reviewed a subset of these
frameworks in Section 1.2.

In Section 2, we present the basic mathematical structure of energy
system optimization models. This includes their dimensions, their com-
ponent logic, and a basic set of equations to describe the fundamental
capabilities of these technology networks.

Section 3 presents extended component formulations that account
for more detailed financial or operational features, such as non-linear
investment curves in Section 3.1.1 or technology dynamics in Sec-
tion 3.1.2, as well as those features only associated with a certain com-
ponent type, such as price-elastic demand from sinks in Section 3.2.1.

Section 4 sheds light on additional constraints that are imposed on
energy systems, such as maximum technology potentials, regulations,
or supply security requirements. The review of different methods to
account for multiple system-related objectives in a single optimization
program in Section 5 rounds off the formulation of optimization-based
energy system models.

As the models can become computationally extremely demanding,
Section 6 discusses methods to guarantee solvability by means of model
aggregation or parallelization. Finally, Section 7 identifies current weak
points of optimization-based energy system modeling, while Sections 8
and 9 discuss and conclude the findings of this work.

1.1. Framework review

The framework review relies on two databases for energy system
modeling tools, the ‘‘Open Energy Platform’’ [2] and the ‘‘Open Energy
Modelling Initiative’’ [3], containing 27 and 92 different energy system
modeling tools, respectively. Of the 119 entries, 13 tools were listed in
both databases, and three entries referred to different versions of the
same tool, leaving 103 unique tools in both databases. Out of the 103
frameworks, we identified 63 frameworks based on linear or mixed-
integer linear optimization by checking relevant publications, model
reports (e.g., [4,5]), or model documentations on GitHub (e.g., [6])
and Read the Docs (e.g., [7–9]). The framework selection process is
illustrated in Fig. 1 and the meta-data of these frameworks is listed in
Table 12 in Appendix A.

Beyond the meta-data listed in both databases, we analyzed the
country of origin of the respective framework as well as their earliest
reported appearance in the literature. The latter aspect was identified
via a year-based publication search using Google Scholar (including
non-peer-reviewed documents such as conference proceedings), the
2 
Fig. 1. Framework selection process based on the two online data bases ‘‘Open Energy
Platform’’ [2] and the ‘‘Open Energy Modelling Initiative’’ [3].

Fig. 2. Country of origin and start of development of the 63 reviewed frameworks.
(a): number of frameworks by year of development in 5-year intervals; (b): frameworks
by country 1970–2014; (c): frameworks by country 1970–2024.

license dates for the respective framework on GitHub, and data entries
on the frameworks’ webpages (if existent). The results are shown in
Fig. 2.

From Fig. 2a, it is apparent that the number of framework develop-
ments per year has been continuously growing since 1990. Among the
early frameworks before 1985, the predecessors of the TIMES (1998)
modeling framework, MARKAL (1978), and EFOM (1982) can be found.
The so-far strongest growth of open-source frameworks can be observed
between 2015 and 2019. The period 2020–2024 is not yet completed
and likely exhibits an additional time lag for two reasons: first, the
databases may not be up-to-date, and second, the frameworks currently
under development are not yet published. An additional time lag can be
observed in the fifth column of Table 12, which shows that the latest
frameworks have not yet been reviewed in literature, motivating our
twofold approach of a direct framework review and a meta-review in
order to be as up-to-date as possible.

Figs. 2b and c reveal that the number of frameworks has grown
from 25 in 2014 to 63 in 2024 and thus almost tripled, indicating the
increasing need for flexible and easy-to-parameterize software packages
allowing rapid energy system modeling. It must be stated that the two
databases exhibit a strong dominance of European or US developments,
potentially indicating a bias towards Western publications. However,
to the best of our knowledge, we are not aware of any compara-
ble open-source energy system modeling community in other world
regions.
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Table 1
Categorization of procedural reviews.

Reference Tools
reviewed

Scope: Details Focus Type of models Frame-works
incl.

Description

Models Methodology

Approach #1: Procedural review of tools
a. Scope: Geographically specific

Jebaraj and Iniyan
[10], 2006

– Developing countries ✓ ✗ sim, opt, other ✓ Various models used for developing countries

Foley et al. [11], 2010 7 USA, Europe ✓ ✗ TD, BU, sim, gen, other ✗ Modeling response to renewable energy policies
Markovic et al. [12],
2011

24 Community ✓ ✗ TD, BU, sim, gen, other ✓ Various tools used in community energy systems

b. Scope: Not specified/sector-specific

Connolly et al. [13],
2010

37 n.a. ✓ ✗ BU, sim, gen ✓ Tools for the integration of renewable energy into power systems

Mahmud and Town
[14], 2016

67 Electric vehicles ✓ ✗ sim ✓ Simulation tools for electric vehicle interactions with power networks

Müller et al. [15],
2018

47 Europe ✓ ✗ TD, BU, sim, opt ✓ Development of an online platform regarding ESMs

Approach #2: Procedural review of methodology
a. Scope: Geographically specific

Keirstead et al. [16],
2012

n.a. Urban ✗ ✓ sim, opt ✗ Approaches, challenges and opportunities in urban ESMs

DeCarolis et al. [17],
2017

n.a. United Kingdom ✗ ✓ n.a. ✓ Development of guiding principles for ESM modeling

Gardian et al. [18],
2022

40 n.a. ✓ ✗ TD, BU, sim, opt ✓ Data harmonisation and transparency in the MODEX project

b. Scope: Not specified/sector-specific

Baños et al. [19], 2011 n.a. n.a. ✗ ✓ opt ✗ Optimization methods for renewable energy
Pfenninger et al. [20],
2014

21 n.a. ✓ ✓ sim, opt ✓ Approaches relevant to national and international energy policy

Lund et al. [21], 2017 n.a. n.a. ✓ ✓ opt, sim ✓ Comparison of methodology in simulation vs optimization tools
Mavromatidis et al.
[22], 2018

n.a. Distributed systems ✗ ✓ other ✗ Review of approaches to characterize uncertainty

Morrison [23], 2018 n.a. Open science ✗ ✓ n.a. ✗ Reproducibility and open science in energy modeling
Priesmann et al. [24],
2019

n.a. n.a. ✗ ✓ opt ✗ Correlation between model complexity and accuracy of the results

Fridgen et al. [25],
2020

40 Sector coupling ✓ ✓ n.a. ✗ Review of methodology for extending sector coupling

Hirt et al. [26], 2020 44 n.a. ✗ ✓ n.a. ✗ Links between energy and climate models and socio-technical theories
Kotzur et al. [27],
2021

15 n.a. ✓ ✓ BU, opt ✓ Various approaches to reducing complexity in ESMs

Blanco et al. [28],
2022

18 Hydrogen-based systems ✓ ✓ opt, sim ✓ Taxonomies for energy models relating to hydrogen systems

Fodstad et al. [29],
2022

n.a. n.a. ✓ ✓ n.a. ✓ Key challenges in energy system modeling

Kriechbaum et al. [30],
2018

29 Multi-energy systems ✓ ✓ opt ✓ Modelling grid-based Multi-Energy Systems

Mancarella et al. [31],
2016

4 Sector coupling ✓ ✓ opt, sim ✓ Analysis of tools and methodologies for multi-energy systems
The share of US developments has decreased, whereas the share
f German developments has increased. In the period from 2015 to
019 alone, 10 out of 25 frameworks, or 40%, were of German origin.
he reasons are manifold. On the one hand, Germany, together with
ther European countries, takes over a leading role in decarbonization
mong industrialized countries. On the other hand, the publication of
ource codes was supported by different German research associations,
uch as the Helmholtz Association, in an endeavor to increase result
ransparency and reproducibility. However, many of these frameworks
re still solely used by their home institutions, raising the question of
edundancy and the necessity of joining research efforts in order to
void redundancies. Notably, this question is not a particularly German
ne given the overall increasing number of yearly developments.

Furthermore, Table 12 in Appendix A reveals that only a minor
hare of new developments is driven by new software architectures or
rogramming languages such as R or Julia since 2017. The prevalent
odeling languages are GAMS and Python, with GAMS being consis-

ently used at least since the 1990s, whereas Python has seen an uptake
ince the 2010s with its optimization language package Pyomo. The
ost popular solvers are CPLEX and Gurobi. These findings support

he hypothesis that the development of new frameworks is not so much
riven by new and potentially more powerful programming languages
r solvers, but rather by either the neglect of existing frameworks or
now-how barriers that make it difficult to enter an existing framework,

espite being open-source available, and to develop it further.

3 
Against this backdrop, it is first questionable whether open-source
development alone suffices to reduce rival and potentially redundant
developments or whether documentation needs to be equally improved
to allow modelers to build upon each other’s preliminary work. Sec-
ond, it is a strong motivation for this work to demonstrate the basic
concepts of mixed-integer linear energy system optimization shared by
the reviewed frameworks to allow for easy entry into existing codes.

1.2. Meta-review and original contribution

Tables 1 and 2 as well as Table 13 in Appendix B present an addi-
tional meta-review on existing reviews on energy system modeling. In
contrast to the framework review, it is based on a backward reference
search, i.e., based on the reference lists of most current publications,
prior reviews were identified. This approach was chosen because it
successfully identified those reviews on energy system models with a
special focus on frameworks, as the sixth column in Tables 1, 2, and 13
illustrate. Notably, this approach can be prone to bias, among others,
a time lag with respect to the latest relevant reviews or regarding
citation clusters. Despite its shortcomings, it proved more practical than
a keyword search for multiple reasons:

• The words ‘‘review’’ and ‘‘survey’’ were found to be used inter-
changeably or not at all in the title, abstract, or keywords of

relevant reviews.
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Table 2
Categorization of feature-based reviews.

Reference Tools
reviewed

Scope: Details Focus Type of models Frame-
works incl.

Description

Models Methodology

Approach #3: Define features/types and then sort tools to draw conclusions
a. Scope: Geographically specific

Van Beeck [32], 1999 10 Developing countries ✓ ✓ TD, BU, sim, opt ✓ Modeling approaches applicable to small-scale settings
Bhattacharyya and
Timilsina [33], 2010

10 Developing countries ✓ ✓ TD, BU, sim, gen,
other

✓ Various ESMs for developing countries

Mundaca et al. [34],
2010

12 Household ✓ ✓ BU, sim, opt, acc ✓ Decision frameworks for energy economy models

Manfren et al. [35],
2011

14 Urban ✓ ✓ sim, opt, acc, other ✓ Selection of models for distributed energy planning

Mendes et al. [36], 2011 6 Community ✓ ✓ BU, sim, opt ✓ Selection of models used for integrated energy systems
Mirakyan and De Guio
[37], 2013

12 Urban ✓ ✓ sim, opt, acc, other ✓ Tools and methods for integrated energy planning in cities

Allegrini et al. [38],
2015

24 District ✓ ✓ sim ✗ Modeling approaches and tools for district-level systems

Huang et al. [39], 2015 (?) Community ✓ ✓ TD, BU, sim ✓ Methods and tools for community energy planning
van Beuzekom et al.
[40], 2015

12 Urban ✓ ✓ opt ✓ Multi-energy system tools for urban development

Olsthoorn et al. [41],
2016

14 District heating ✓ ✓ sim, opt ✓ Integration of renewable energy and storage into district heating

Lyden et al. [42], 2018 13 Community ✓ ✓ sim, opt ✓ Tool selection process for community systems
Abbasabadi and Ashayeri
[43], 2019

13 Urban ✓ ✓ BU, sim ✓ Review of models for urban energy systems

Oberle and Elsland [44],
2019

40 Germany ✓ ✓ TD, BU, sim, opt,
acc

✓ Focus on open access and accessibility in long-term models

Scheller and Bruckner
[45], 2019

8 Municipal ✓ ✓ BU, opt ✓ Optimization-based decision support tools for municipal planning

Ridha et al. [46], 2020 145 n.a. ✓ ✓ TD, BU, sim, opt ✗ Focus on complexity of tools in temporal, spatial, mathematical, and modeling content
Klemm and Vennemann
[47], 2021

145 District ✓ ✓ opt, BU ✓ Focus on optimization tools for multi-energy systems in urban districts

b. Scope: Not specified/sector-specific

Li et al. [48], 2015 14 n.a. ✓ ✓ other ✗ Socio-technical energy transition (STET) models
Crespo del Granado
et al. [49], 2018

7 n.a. ✓ ✓ TD, BU, opt ✓ Review of intersection between energy and economic models

Lopion et al. [50], 2018 24 n.a. ✓ ✓ BU, sim, opt ✓ National-scale ESMs that incorporate all energy sectors
Ringkjøb et al. [1], 2018 75 n.a. ✓ ✓ sim, opt, TD, BU,

other
✓ General overview of various energy system models

Groissböck [51], 2019 31 n.a. ✓ ✓ sim, opt ✓ Evaluates maturity of open source ESMs vs proprietary models
Fattahi et al. [52], 2020 19 n.a. ✓ ✓ opt, sim ✓ Identify modeling gaps and suggestion of two conceptual modeling suites.
Prina et al. [53], 2020 24 n.a. ✓ ✓ BU ✓ Resolution in time, space, techno-economic detail, and sector coupling
Weinand et al. [54],
2020

359 Decentralized systems ✓ ✓ TD, BU, sim, opt ✓ Focus on off-grid decentralized systems

Approach #4: Describe/categorize tools and then draw conclusions
a. Scope: Geographically specific

Hall and Buckley [55],
2016

22 United Kingdom ✓ ✓ TD, BU, sim, opt,
acc, other

✓ Prevalent ESM tools used in the UK: approaches and methods

Ferrari et al. [56], 2019 17 Urban ✓ ✓ sim, opt ✓ User-friendliness in tools for urban energy planning
Musonye et al. [57],
2020

30 Sub-Saharan Africa ✓ ✓ TD, BU, sim, opt, ✓ Scoping review of integrated energy system models

Kumar et al. [58], 2022 16 District ✓ ✓ opt, BU ✓ Development of decision support tree for optimization tool selection

b. Scope: Not specified/sector-specific

Savvidis et al. [59], 2019 40 n.a. ✓ ✓ TD, BU, sim, opt ✓ Attempts to bridge gap between energy system models and policy
Chang et al. [60], 2021 54 n.a. ✓ ✓ sim, opt, other ✓ Reviews tool features, linkages, accessibility, and policy relevance
Riera et al. [61], 2022 99 Hydrogen production ✓ ✓ opt ✓ Comparison of hydrogen supply chain and process design models
Misconel et al. [62],
2022,

4 Electricity system ✓ ✓ opt ✗ High-resolution electricity system modeling
• The words ‘‘energy’’, ‘‘system’’, and ‘‘model’’, as well as, in the
case of electricity system models, ‘‘power’’ or ‘‘electricity’’ in place
of ‘‘energy’’, appear in arbitrary order.

• Relevant reviews either speak of ‘‘models’’, ‘‘frameworks’’, or
‘‘tools’’, partly with the same and partly with a varying meaning.

• A keyword search yielded either far too many irrelevant publica-
tions or missed a notable share of the reviews found by a citation
search.

The tables delineate two fundamental and one additional type of
eview of energy system models, which are illustrated in Fig. 3. Proce-
ural reviews listed in Table 1 enumerate either tools (Approach 1) or
ethodologies (Approach 2) in a procedural manner, i.e., they focus on

ools or aspects separately and take a bird’s eye view. The feature-based
eviews presented in Table 2 focus on a comparison of tools and models
y means of their features, i.e., their capability to model certain aspects.
heir focus is either centered on the features, and different models are
ategorized according to them (Approach 3) or vice versa (Approach
). These reviews provide good guidance for modelers searching for
he right tools to address the problem at hand, but they likewise do
ot provide exact mathematical formulations. Recently, an additional
4 
approach for comparing energy system frameworks has been developed
within the MODEX project (MODel EXperiments for the energy tran-
sition). As some of the authors of this publication have been part of
this project and we want to avoid bias, the corresponding review is
listed in Table 13 in Appendix B. The approach can be considered a
fifth type of review that plugs identical input data into different models
and compares them by analyzing the different results they yield.

Tables 1 and 2 reveal that the overall number of reviewed models
or frameworks has steadily increased over the years in accordance with
the growing number of modeling tools. However, the demand for both
a bird’s-eye view of modeling and detailed feature comparisons has
grown equally over the years, indicating that there is no trend in favor
of comprehensibility or level of detail. MODEX reviews, on average,
compare fewer models and frameworks with each other, given the fact
that for result comparisons, these reviews run different models, making
the analyses far more complex than those based on fact sheets.

With respect to the scope of the reviews, the largest groups are
spatially defined scopes, e.g., regional, national, or continental systems,
or a non-specified one, i.e., general reviews of tools for modeling. With

respect to Approach 2 in Table 1, a stronger focus on certain sectors or
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Fig. 3. Classification of review types of energy system modeling. The numbers beneath
the three types correspond to the respective number of reviews analyzed as part of the
present study.

system aspects such as distribution [22] or hydrogen systems [28] can
be observed.

While Approach 1 heavily focuses on existing models and Ap-
proach 2 on modeling approaches rather than existing models, ap-
proaches 3 and 4, listed in Table 2, treat models and their feature-
based capabilities equally, i.e., we recommend these publications when
searching for the right model for a certain application case. Most no-
tably, Ringkjøb et al. [1] and Groissböck [51] conduct highly detailed
matrix comparisons.

Furthermore, Tables 1 and 2 show that tools or models are con-
sistently distinguished by their techno-economic perspective, namely
top-down (TD) vs. bottom-up (BU), or by their modeling technique,
e.g., optimization vs. simulation. The separation into TD and BU was al-
ready defined by Van Beeck [32], with TD models focusing on economic
laws and treating technical aspects in a less detailed manner, whereas
BU models consider differentiated energy systems and network topolo-
gies and pay less attention to market mechanisms. In contrast, modeling
techniques have become less diverse over time, or the terminology
for approaches has become more unified. While early reviews dif-
ferentiated between optimization, simulation, generation, accounting,
and other models, modern ones use either simulation or optimization,
with a tendency towards optimization. This trend benefits from the
significant progress of mixed-integer linear optimization solvers, so that
simulation approaches continuously transition from large-scale models
to small-scale algorithmic operational modeling, covering topics such
as model predictive control.

As mentioned above, the majority of identified reviews consider
frameworks as part of their analyses. Over the years, a shift in termi-
nology can be observed: while the term ‘‘framework’’ was originally
used for programs consisting of a multitude of loosely connected (soft-
coupled) sub-models, tool chains, or ‘‘accounting frameworks’’, the
modern definition of framework refers to a modular, object-oriented
definition of non-parameterized component classes that can be freely
connected to each other and turned into various system components
by means of appropriate parameterization [2,3,23]. As frameworks
can be turned into any model with appropriate parameterization, they
have become an indispensable tool for energy software development. In
the following, we focus on the semantic and mathematical description
of optimization-based mixed-integer linear programming frameworks,
given their dominance in recent years.
5 
2. Model dimensions and basic model

2.1. Model dimensions

Energy system models can consist of a multitude of dimensions,
among which are commodities, spatial and temporal resolutions, in
some cases stochastic scenarios and transformation pathways, and,
most importantly, components. In bottom-up models relying on single
optimization problems with single objectives, as well as associated
frameworks, these dimensions roughly correspond to the indices of the
model.

Commodities
Sector-coupled [63,64] energy systems often comprise a multitude

of commodities, be it energy forms, energy carriers, or even raw mate-
rials, as part of life-cycle assessments (LCA). Power systems focusing on
electricity are an example of systems with few commodities, whereas
models with integrated LCA and a detailed representation of chemical
transformation processes are models with numerous different com-
modities. Commodities constitute the medium that ‘‘flows’’ between
components that consume and/or produce commodities.

Space
Another dimension covered by many models, especially those fo-

cusing on infrastructure-related questions, is the spatial one, also re-
ferred to as regions, locations, or nodes. Single-nodal systems only
consider a single location, known as the ‘‘copper plate assumption’’,
i.e., congestion-free commodity flows between demand and supply,
whereas multi-nodal systems explicitly consider the capacity-related
transport restrictions of commodities between different locations. Note
that transmission losses can be considered in both single- and multi-
nodal models, though in a simplified manner in single-nodal ones (see,
e.g., [65–67]).

Time
The variability of demand and intermittency of renewable energy

sources have led to the need to consider different demand and supply
situations using discrete time steps. The components must handle
changing commodity supplies and demands, i.e., the operational vari-
ables are defined for each time step and must stay within the capacity
limits. This dimension is also crucial for storage modeling, as energy
storage levels depend on transient energy supply and demand cycles
over time.

A smaller number of models and frameworks have options for han-
dling uncertainty and transformation processes in the system, i.e., tran-
sient system designs over time. These model dimensions are of partic-
ular interest for models in which operational reliability is a priority
(e.g., if the system has to cope with various extreme scenarios) or for
long-term planning models in which a status quo system is gradually
replaced by newer systems.

Stochastic scenarios
Some energy system models consider uncertainty by adding a fourth

dimension to represent a set of discrete scenarios with predefined
probabilities of occurrence. With this dimension, uncertainties in model
parameters, such as the weather determining the availability of wind
and solar resources or diverging demand projections, can be considered
simultaneously. It also allows the modeling of a multitude of potentially
system-critical events, such as unexpected transmission line or power
plant outages. Technically, this approach adds an additional stage to
optimization models, turning them into two- or multi-stage stochastic
programs, also referred to as deterministic equivalent programs (DEPs).
Despite their similarity to time steps likewise representing discrete load
and supply situations, stochastic scenarios do not imply a chronological
order, i.e., each scenario has its own chance of occurrence and no
preceding or succeeding scenario. Thus, this dimension can be used for
creating robust system designs but not for modeling energy storage.
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Fig. 4. (De-)commissioning and investment stock. In an optimization with a trans-
formation pathway between the investment periods i0 and iE, each component has a
total capacity in each investment period, which is given by the sum of commissioned
capacities from prior and current investment periods that are still within their lifetime,
e.g., in i2 orange, red, magenta, and purple. Capacities are decommissioned as soon as
they reach their lifetime limit, in this case, after four investment periods.

Transformation pathway
Energy system models and frameworks designed to cover multiple

decades face the challenge of projecting the transformation of the
system over time, starting with an already existing system (brownfield
analysis as opposed to designing from scratch in greenfield analyses).
To capture the stepwise transformation of the system in a more realistic
manner, these models often comprise multiple investment periods,
along which the capacities of the energy technologies gradually change.

As system components normally have a predefined lifetime, the
capacities of a technology being commissioned at a certain point in
time must be decommissioned at the latest at the end of their respective
lifetimes. This leads to a transient capacity stock, as illustrated in
Fig. 4. Many contemporary frameworks incorporate this index given
the importance of long-term system planning to reach climate neu-
trality, among which are, e.g., the frameworks ETHOS.FINE [68,69],
OSeMOSYS [70], REMix [71] and TIMES [4,5,72–74].

Components
Finally and most importantly, all modern optimization-based frame-

works for bottom-up energy system modeling explicitly consider energy
technologies, that is, components with a size and functionality that are
part of a larger energy network. In general, these components comprise
capacities and operational variables. The capacities are variable in
capacity expansion models (CEPs), which aim at finding cost-minimal
energy system designs, whereas they are fixed in dispatch- or unit
commitment (UC) models, which only minimize the operation costs of
an existing system and therefore parameters. In any case, the opera-
tional variables must not surpass the installed capacity of the respective
component.

These components are core to bottom-up modeling frameworks as
they form system networks in which commodities flow from supply to
demand sites. These networks can be modeled as undirected graphs
with nodes representing either energy system components or hubs (see
Fig. 5a). The edges connect these components to each other. Each com-
ponent comprises the basic set of capacity and operational variables but
also belongs to a certain component type that has specialized roles in
the energy system. In many frameworks, the basic component types are
sinks and sources, converters, storage, and transmission lines.

Sources and sinks can feed commodities into or withdraw them
from the system; e.g., photovoltaic panels provide the system with
electricity, whereas households withdraw it. Converters convert two or
more commodities into one another, e.g., fuel cells turn hydrogen into
water and electricity. The commodity flows are linked with each other
at any point in time via conversion rates that define how much of one
or more commodities is turned into one or more other commodities.
6 
Fig. 5. (a): a demonstrative multi-nodal energy system model with basic components
for supply, demand, conversion, storage, and transmission between regions; (b): a
typical framework architecture in which specialized components inherit from a general
component class and whose costs and inputs or outputs contribute to the objective
function and energy balances, respectively.

Storage, such as hydrogen storage, consumes commodities at one
point in time to release them at a later point. The sum of charges
and withdrawals over time defines the state of charge (SOC) of the
respective storage. Transmission units connect different regions with
each other; that is, they simultaneously serve as a source in one region
and a sink in another region, and they are linked by capacity and
operation. For instance, these transmissions can be, e.g., direct current
lines or hydrogen pipelines.

Most components contribute to the overall costs of the energy
system via their net capacity and operation costs, with their maximum
input or output being capped by their respective net capacities. How-
ever, some components, such as demand sinks, do not necessarily have
a variable net capacity but a fixed demand for commodities that must
be satisfied at any point in time.

Hubs within a spatial region serve to maintain the flow conservation
of each commodity in each spatial region but generally do not represent
cost-driving network components. This implies that each spatial region
is regarded as a separate copper plate.

Although the components are named differently in the frameworks
examined, they share many basic properties, in particular a capacity
variable and several operational variables, one for each time step.
Therefore, basic common functionalities are often defined in a general
component class, from which subordinate classes for the respective
component types inherit and to which they add component type-
specific functionalities. Fig. 5b visualizes how specialized components
in optimization frameworks such as ETHOS.FINE [69] inherit from a
general component class and contribute to total system costs and energy
balances.
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Table 3
Abbreviations and symbols.

Symbol Description

Sets

M𝑠𝑜𝑢𝑟𝑐𝑒, subset of components representing sources
M𝑠𝑖𝑛𝑘 subset of components representing sinks
M𝑐𝑜𝑛𝑣 subset of components representing conversion units
M𝑠𝑡𝑜𝑟𝑒 subset of components representing storage units
M𝑡𝑟𝑎𝑛𝑠 subset of components representing transmission units
M𝑔 components associated with a commodity (a good) in g
G commodities
I investment periods
R regions
S scenarios
T time steps
P (typical) periods (e.g., typical days)

Variables

𝐶𝐶𝐴𝑃𝐸𝑋 capital expenditures of commissioned capacities
𝑓 commodity flow variable
𝑥𝑜𝑝 operation-rate variable
𝑥𝑜𝑝,𝑏𝑖𝑛 binary variable indicating whether a component is active

(1) or not (0)
𝑥𝑜𝑝,𝑏𝑖𝑛,𝑠𝑑 binary variable indicating whether a component is

deactivated (1) or not (0)
𝑥𝑜𝑝,𝑏𝑖𝑛,𝑠𝑢 binary variable indicating whether a component is

activated (1) or not (0)
𝑥𝑜𝑝,𝑐ℎ operation-rate variable representing charging
𝑥𝑜𝑝,𝑑𝑖𝑠 operation-rate variable representing discharging
𝑥𝑜𝑝,𝑛𝑒𝑡 net operation-rate (mass-flow) variable
𝑥𝑆𝑂𝐶 variable representing the state of charge of a storage
𝑥𝑐𝑎𝑝 installed capacity variable
𝑥𝑐𝑜𝑚𝑚𝑖𝑠 commissioned capacity

Parameters

𝑐𝑐𝑎𝑝 annualized net capacity cost
𝑐𝑜𝑝 operation cost
𝑑 discount factor
𝑙𝑡 lifetime
𝑀𝐷𝑇 minimal down-time
𝑀𝑈𝑇 minimal up-time
𝑟𝑑𝑜𝑤𝑛
𝑐 maximum down-ramping rate
𝑟𝑢𝑝𝑐 maximum up-ramping rate
𝛥𝑡 time-step length
𝛾 conversion factor for conversion of one commodity into

another
𝜆 dimensionless weighting factor with values between 0

and 1
𝜂𝑐ℎ charging efficiency of a storage
𝜂𝑑𝑖𝑠 discharging efficiency of a storage
𝜂𝑠𝑑 self-discharge rate
𝜃 net capacity factor

Abbreviations

𝐶𝐴𝑃𝐸𝑋 capital expenditures
𝐿𝑂𝐷𝐹 line outage distribution factor
𝑃𝑇𝐷𝐹 power transfer distribution factor
𝑃𝑉 𝐼𝐹𝐴 present value interest factor of annuity

2.2. Basic model

The basic set of equations that most multi-regional bottom-up en-
ergy system models have in common is given by Eqs. (1a)–(1r) us-
ing the notation from Table 3. This illustrative formulation forms a
linear minimization problem. Similar descriptions can be found in
both journal articles [68,75–79], framework descriptions [73,74,80–
82], and online framework documentations [6–9]. Here, M𝑠𝑜𝑢𝑟𝑐𝑒, M𝑠𝑖𝑛𝑘,
M𝑐𝑜𝑛𝑣, M𝑠𝑡𝑜𝑟𝑒, and M𝑡𝑟𝑎𝑛𝑠 denote the set of components representing
sources, sinks, conversion, storage, and transmission units. M𝑔 rep-
resents those components that produce, consume, convert, store, or
transmit a commodity, that is, a good 𝑔 ∈ G.

min
(

∑

𝑐

∑

𝑖

∑

𝑟

(

𝐶𝑐𝑎𝑝𝑒𝑥
𝑐,𝑟,𝑖 +

∑

𝑠

∑

𝑡
𝑝𝑠𝑐

𝑜𝑝
𝑐,𝑖,𝑟,𝑠,𝑡𝑥

𝑜𝑝
𝑐,𝑖,𝑟,𝑠,𝑡

))

(1a)

.𝑡. ∀𝑐 ∈ M, 𝑖 ∈ I, 𝑟 ∈ R∶
7 
𝐶𝑐𝑎𝑝𝑒𝑥
𝑐,𝑟,𝑖 =

𝑖
∑

𝑖′=𝑖−𝑙𝑡𝑐∕|𝑖|+1
𝑐𝑐𝑎𝑝𝑐,𝑟,𝑖′ ⋅ 𝑥

𝑐𝑜𝑚𝑚𝑖𝑠
𝑐,𝑟,𝑖′ ⋅

𝑃𝑉 𝐼𝐹𝐴(𝑑, |𝑖|)
𝑃𝑉 𝐼𝐹𝐴(𝑑, 𝑙𝑡𝑐 )

⋅
1

(1 + 𝑑)𝑖′ ⋅|𝑖|
(1b)

𝑥𝑐𝑎𝑝𝑐,𝑟,𝑖 =
𝑖

∑

𝑖′=𝑖−𝑙𝑡𝑐∕|𝑖|+1
𝑥𝑐𝑜𝑚𝑚𝑖𝑠𝑐,𝑟,𝑖′ (1c)

𝑠.𝑡. ∀𝑔 ∈ G,∀𝑖 ∈ I, 𝑟 ∈ R, 𝑠 ∈ S, 𝑡 ∈ T∶
∑

𝑐∈M𝑔

𝑓𝑐,𝑔,𝑖,𝑟,𝑠,𝑡 = 0 (1d)

𝑓𝑐,𝑔,𝑖,𝑟,𝑠,𝑡 = 𝑥𝑜𝑝𝑐,𝑖,𝑟,𝑠,𝑡 ∀ 𝑐 ∈ M𝑠𝑜𝑢𝑟𝑐𝑒 ∩M𝑔 (1e)

𝑓𝑐,𝑔,𝑖,𝑟,𝑠,𝑡 = −𝑥𝑜𝑝𝑐,𝑖,𝑟,𝑠,𝑡 ∀ 𝑐 ∈ M𝑠𝑖𝑛𝑘 ∩M𝑔 (1f)

𝑓𝑐,𝑔,𝑖,𝑟,𝑠,𝑡 = 𝛾𝑐,𝑔,𝑖,𝑟,𝑠,𝑡𝑥
𝑜𝑝
𝑐,𝑖,𝑟,𝑠,𝑡 ∀ 𝑐 ∈ M𝑐𝑜𝑛𝑣 ∩M𝑔 (1g)

𝑓𝑐,𝑔,𝑖,𝑟,𝑠,𝑡 = 𝑥𝑜𝑝,𝑑𝑖𝑠𝑐,𝑖,𝑟,𝑠,𝑡 − 𝑥𝑜𝑝,𝑐ℎ𝑐,𝑖,𝑟,𝑠,𝑡 ∀ 𝑐 ∈ M𝑠𝑡𝑜𝑟𝑒 ∩M𝑔 (1h)

𝑓𝑐,𝑔,𝑖,𝑟,𝑠,𝑡 = 𝑥𝑜𝑝𝑐,𝑖,(𝑟′ ,𝑟),𝑠,𝑡 − 𝑥𝑜𝑝𝑐,𝑖,(𝑟,𝑟′ ),𝑠,𝑡 ∀ 𝑐 ∈ M𝑡𝑟𝑎𝑛𝑠 ∩M𝑔 (1i)
𝑠.𝑡. ∀𝑖 ∈ I, 𝑟 ∈ R, 𝑠 ∈ S, 𝑡 ∈ T∶

𝑥𝑜𝑝𝑐,𝑖,𝑟,𝑠,𝑡 ≥ 0 ∀ 𝑐 ∈ M𝑠𝑜𝑢𝑟𝑐𝑒,𝑠𝑖𝑛𝑘,𝑐𝑜𝑛𝑣,𝑠𝑡𝑜𝑟𝑒

(1j)
𝑥𝑜𝑝𝑐,𝑖,(𝑟,𝑟′ ),𝑠,𝑡 ≥ 0 ∀ 𝑐 ∈ M𝑡𝑟𝑎𝑛𝑠, 𝑟′ ∈  ⧵ {𝑟}

(1k)

𝑥𝑜𝑝𝑐,𝑖,𝑟,𝑠,𝑡 ≤ 𝜃𝑐,𝑖,𝑟,𝑠,𝑡𝑥
𝑐𝑎𝑝
𝑐,𝑖,𝑟𝛥𝑡 ∀ 𝑐 ∈ M𝑠𝑜𝑢𝑟𝑐𝑒,𝑠𝑖𝑛𝑘,𝑐𝑜𝑛𝑣 (1l)

𝑥𝑆𝑂𝐶
𝑐,𝑖,𝑟,𝑠,𝑡+1 = 𝑥𝑆𝑂𝐶

𝑐,𝑖,𝑟,𝑠,𝑡 + 𝜂𝑐ℎ𝑐,𝑖,𝑟,𝑠,𝑡𝑥
𝑜𝑝,𝑐ℎ
𝑐,𝑖,𝑟,𝑠,𝑡 −

𝑥𝑜𝑝,𝑑𝑖𝑠𝑐,𝑖,𝑟,𝑠,𝑡

𝜂𝑑𝑖𝑠𝑐,𝑖,𝑟,𝑠,𝑡

∀ 𝑐 ∈ M𝑠𝑡𝑜𝑟𝑒 (1m)

𝑥𝑆𝑂𝐶
𝑐,𝑖,𝑟,𝑠,𝑡 ≥ 0 ∀ 𝑐 ∈ M𝑠𝑡𝑜𝑟𝑒 (1n)

𝑥𝑆𝑂𝐶
𝑐,𝑖,𝑟,𝑠,𝑡 ≤ 𝑥𝑐𝑎𝑝𝑐,𝑖,𝑟 ∀ 𝑐 ∈ M𝑠𝑡𝑜𝑟𝑒 (1o)
− 𝑥𝑐𝑎𝑝𝑐,𝑖,𝑟,𝑠,𝑡𝛥𝑡 ≤ 𝑥𝑜𝑝𝑐,𝑖,(𝑟′ ,𝑟),𝑠,𝑡 − 𝑥𝑜𝑝𝑐,𝑖,(𝑟,𝑟′ ),𝑠,𝑡 ∀ 𝑐 ∈ M𝑡𝑟𝑎𝑛𝑠, 𝑟′ ∈  ⧵ {𝑟}

(1p)
𝑥𝑐𝑎𝑝𝑐,𝑖,𝑟,𝑠,𝑡𝛥𝑡 ≥ 𝑥𝑜𝑝𝑐,𝑖,(𝑟′ ,𝑟),𝑠,𝑡 − 𝑥𝑜𝑝𝑐,𝑖,(𝑟,𝑟′ ),𝑠,𝑡 ∀ 𝑐 ∈ M𝑡𝑟𝑎𝑛𝑠, 𝑟′ ∈  ⧵ {𝑟}

(1q)
𝑥𝑐𝑎𝑝𝑐,𝑖,𝑟,𝑠,𝑡𝛥𝑡 ≥ 𝑥𝑜𝑝𝑐,𝑖,(𝑟′ ,𝑟),𝑠,𝑡 + 𝑥𝑜𝑝𝑐,𝑖,(𝑟,𝑟′ ),𝑠,𝑡 ∀ 𝑐 ∈ M𝑡𝑟𝑎𝑛𝑠, 𝑟′ ∈  ⧵ {𝑟}

(1r)

Eq. (1a) is the objective function, minimizing the net present value
of the capacity and operation costs of all components, all investment
periods, all spatial regions, and for all load scenarios, as well as
every time step. The capacity-related net present value of capacity
expenditures (CAPEX) of the capacity stock of a component throughout
an investment period and its capacity in that investment period are
defined by Eqs. (1b) and (1c). Here, Eq. (1b) uses the present value
interest factor of annuity1 (PVIFA) to first transform the commissioning
costs of a component into annuity costs and to subsequently transform
them into costs per investment period. Eq. (1d) maintains the flow
conservation for all commodities entering and leaving a hub, which is
defined for each commodity, time step, region, investment period, and
scenario of the model.

Eqs. (1e) and (1f) link the operation of sources and sinks to the re-
spective flows of commodities produced or consumed by the respective
sources and sinks. Eq. (1g) links the operation of conversion units to
the production or consumption of commodities. As conversion units
link multiple commodities to each other, e.g., fuel cells link water,
hydrogen, electricity, and oxygen with one another, their operation
is linked to each involved commodity with an individual conversion
factor 𝛾. Eqs. (1h) and (1i) refer to the flow of storage and transmission
components. These components operate in two directions, i.e., charge
and discharge in the case of storage components and transmitting
energy either from region r to region r’ or r’ to r in the case of transmis-
sion components. Therefore, these components have two operational
variables for the commodity the respective component operates with,
defined for each time step, region, investment period, and scenario.

1 Defined as 𝑃𝑉 𝐼𝐹𝐴(𝑑, 𝑙𝑡) = (1+𝑑)𝑙𝑡−1 .

(1+𝑑)𝑙𝑡 ⋅𝑑
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Eqs. (1j) and (1l) guarantee the non-negativity of the components’
variable operation, as well as that none of the operations surpasses the
components’ net capacity. Depending on the type of component, the
maximum power output can deviate from the nominal net capacity;
e.g., photovoltaic panels are limited by their respective net capacity
factor, denoted as 𝜃 in Eq. (1l). The amount of produced, consumed,
converted, stored, or transmitted commodities further depends on the
length of the discrete time steps 𝛥𝑡. Eq. (1m) links the states of charge
between subsequent time steps for storage components. Similar to the
operational variables for source, sink, and conversion units, the state
of charge variables are constrained to be non-negative and must not
surpass the storage net capacity, which is guaranteed by Eqs. (1n) and
(1o).

Eqs. (1p) and (1q) ensure that the net flow of commodities along
a transmission line never exceeds the transmission line’s net capacity
in any direction. As consideration of the net flow can lead to poor
scaling behavior and unnecessary flows in opposite directions within
a single transmission line, Eq. (1r) limits the flow of commodities in
each direction to be at most as big as the built transmission line net
capacity multiplied by the time step duration. This constraint reduces
the model’s numeric stability and convergence behavior by limiting its
indifference regarding gross flows in opposite directions. Alternatively,
the problem of indifference can be circumvented by imposing opera-
tional penalty costs in either direction, which, however, distorts the
total system costs.

3. Component extensions

The following section provides extended model formulations to
account for real system behavior that cannot be adequately captured
by the model in Eqs. (1a)–(1r).

3.1. General component extensions

First, we review the model extensions that can be applied to all
component types.

3.1.1. Non-linear capacity expenditures
Capital expenditures (CAPEX) usually grow non-linearly with capac-

ity because of effects such as technological learning or (dis-)economies
of scale. In the case of technological learning and economies of scale,
marginal costs reduce with output or size. Degressive CAPEX curves
lead to non-convex optimization problems, i.e., the model can have
multiple local minima. This is illustrated by the simple model in
Eqs. (2a)–(2c) with a degressive CAPEX function, in which two ri-
val technologies with the same initial costs must meet a cumulative
demand of 1 MW:

min 𝑐
√

𝑥1 + 𝑐
√

𝑥2 (2a)

s.t. 𝑥1 + 𝑥2 ≥ 1 (2b)

𝑥1, 𝑥2 ≥ 0 (2c)

The model is solved graphically in Fig. 6a and shows two local optima:
either completely in favor of one or the other technology. This non-
convexity significantly drives model complexity. In contrast, models
with convex CAPEX functions, as in the case of the simplified example
in Eqs. (3a)–(3c) and in Fig. 6b, remain convex with a single minimum.
For these models with convex cost functions, by contrast, efficient
solvers for mixed-integer quadratic programs (MIQPs) exist that rely
on quadratic approximations [83] of the cost functions.

min 𝑐𝑥21 + 𝑐𝑥22 (3a)

s.t. 𝑥1 + 𝑥2 ≥ 1 (3b)

𝑥1, 𝑥2 ≥ 0 (3c)
8 
Fig. 6. Graphical solution of a simple optimization problem (a): with a concave CAPEX
curve and (b): with a convex CAPEX curve. The diagram (a) is adapted from Behrens
et al. [84] and illustrates the non-convexity of this problem type, i.e., the existence of
multiple local minima.

Technological learning
Technological learning describes the tendency of a technology to

become more mature over time. Hence, its capacity-specific costs de-
crease with its total installed capacity [85]. This effect can also affect
aspects such as efficiencies [86,87], which, however, will be neglected
in the following. In the simplest case, technological learning can be
described as a power function of a technology and its capacity-specific
costs, i.e., with 𝑐0 and 𝑥0 the initial cost and capacity, respectively, and
𝑐(𝑥) being the cost after having built a cumulative capacity 𝑥 [88]:

𝑐(𝑥) = 𝑐0

(

𝑥
𝑥0

)log2(1−𝐿𝑅)
(4)

The learning rate 𝐿𝑅 ∈ (0, 1) denotes the relative cost reduction af-
ter doubling the cumulative capacity and yields a degressively growing
total cost (TC) function. For a learning rate of 30%, we obtain the same
degressive total cost growth for a technology as stated in the example
in Eq. (2a):

𝑇𝐶(𝑥) = 𝑐(𝑥)𝑥 = 𝑐0

(

𝑥
𝑥0

)log2(1−0.3)
𝑥 ≈ 𝑐0

√

𝑥0 ⋅
√

𝑥 (5)

The resulting non-convexity imposes challenging requirements on
solving algorithms and generally leads to significant runtime increases
[89]. In the literature, listed in Table 4, three different approaches are
used to find (local) optima of these problems, which are schematically
shown in Fig. 7. Problems can be solved directly with an appropriate
solver, but despite this method’s exactness, finding a global optimum
may take an unacceptable amount of time [90].

Alternatively, an iterative linearization of the learning curve to find
a local optimum starts with an initial assumption regarding the slope
of the cost curve [91]. The optimization model is solved, yielding a
capacity for which the cost gradient varies from the initial assumption.
This gradient is then taken for the next iteration, which is repeated
until convergence is achieved. However, the solution depends on the
initial assumption regarding the cost gradients and likely only yields a
local optimum due to the non-convexity of the problem. Improvements
in these local optima can be achieved via multiple initializations with
different starting conditions.

The last approach is a piecewise linearization of the learning curves
and requires the introduction of binary variables and so-called special
ordered sets of type 2 (SOS2) constraints defining the linear segment
to be chosen depending on the capacity of the technology [88]. This
method is computationally less expensive than non-linear optimization
but normally more complex than the iterative linear approach. Further-
more, despite not being numerically exact, as the accuracy depends on
the number of linearized segments, the method is capable of finding the
global optimum, which, e.g., can be found using the branch-and-bound
algorithm.
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Fig. 7. Different options to optimize technologies with degressive technological learn-
ing curves and their computational complexity adapted from Behrens et al. [84]; (a):
direct solution of a non-linear program (NLP); (b): iterative solutions with multiple
linear programs (LPs); (c): solution with a piecewise linear approximation using a
mixed-integer linear program (MILP).

Economies of scale
Economies of scale are a basic principle frequently observed in

microeconomics, whereby output-specific costs decrease with total out-
put [128,129]. One reason for this phenomenon is fixed cost degres-
sion, i.e., the product-specific fixed cost contribution of a machine
decreases with its total output, and running it at full capacity is
incentivized [130].

Economies of scale are a plant-specific phenomenon and therefore
only applicable to models considering individual plants, i.e., those
with a narrow spatial focus. Unlike technological learning, economies
of scale only focus on individual capacity investments. Previously
installed capacities at other sites do not influence the investment costs.

In energy system models, economies of scale are typically applied
to large power plants, such as nuclear power plants [131] or power
transmission systems [132]. Newer energy system models focusing on
renewable energy technologies also apply it to technologies such as on-
and offshore wind turbines [133,134], or electrolysis [135].

There are different options for implementing economies of scale
in energy system models or frameworks. One of these is to use the
previously presented piecewise linearization and map a non-linear cost
function with SOS2 constraints [136–139]. The cost curve can thereby
have any shape and does not necessarily need to be an exponential
function. The number of necessary binary variables rises as the number
of segments used to approximate the cost curve increases, thereby
increasing the model’s complexity.

Additionally, discrete combinations of capacities and costs can map
economies of scale using different investment options [140,141]. The
number of necessary binary variables depends on the available in-
vestment options. SOS1 constraints can guarantee the use of only one
investment decision. Finally, the representation of economies of scale
can also be achieved through the use of an intercept-slope formula-
tion [142–144]. This method allows for the representation of the fixed
cost of a component while increasing model complexity only moder-
ately. For this approach, heuristics based on temporal resolution [145]
and budget-cut algorithms for the early removal of non-financially
viable system setups [146] have also been proposed to decrease the
comparably small additional computational complexity even further.

3.1.2. Technology dynamics
The operation of system components is usually constrained by more

technical limitations than installed capacities alone. In the following, a
non-exhaustive list of dynamic constraints is presented.

Ramping
Ramping refers to the gradient by which a component’s operation

can change over time and is thus a measure of inertia. It is frequently
used in large-scale system models, including inert baseload plants such
9 
Table 4
Technological learning in energy system optimizations. The table is adapted from the
review of Behrens et al. [84].

Authors Year Scope

Fo
re

sig
ht

M
od

el
in

g

Mattsson [92] 1997 Global electricity PF MILP

Mattsson and
Wene [90]

1997 Global electricity PF NLP

Messner [93] 1997 Global energy PF MILP

Barreto and
Kypreos [94]

2000 Global electricity PF MILP

Gritsevskyi
and
Nakićenovi
[95]

2000 Global energy RH MILP

Seebregts
et al. [96]

2000 W. European energy PF MILP

Barreto and
Kypreos [97]

2002 Global electricity PF MILP

Mattsson [98] 2002 Global electricity PF MILP

De Feber
et al. [99]

2003 W. European energy PF MILP

Barreto and
Klaassen
[100]

2004 Global electricity and
fuel production

PF MILP

Barreto and
Kypreos [101]

2004 Global electricity and
fuel production

PF MILP

Barreto and
Kypreos [102]

2004 Global electricity PF NLP

Miketa and
Schratten-
holzer
[103]

2004 Global electricity PF NLP

Riahi et al.
[104]

2004 Global electricity PF MILP

Hedenus et al.
[105]

2006 Global electricity, heat
and transport

lim. F LP

Rafaj et al.
[106]

2005 Global energy, six
sectors and multiple
commodities

PF dyn. LP

Rafaj and
Kypreos [107]

2007 Global energy, six
sectors and multiple
commodities

PF dyn. LP

Turton and
Barreto [108]

2007 Global energy PF MILP

Rout et al.
[109]

2009 Global energy PF MILP

Rout et al.
[110]

2010 Global electricity and
transport

PF MILP

Hayward
et al. [111]

2011 Global electricity PF MILP

Kim et al.
[112]

2012 South Korea electricity,
four demand sectors

PF NLP

Anandarajah
et al. [113]

2013 Global energy, focus on
transport

PF MILP

Wu and
Huang [114]

2014 Taiwan electricity PF NLP

Choi et al.
[115]

2016 South Korea energy PF MILP &
NLP

Hayward
et al. [116]

2017 Global electricity PF MILP

Heuberger
et al. [89]

2017 UK electricity PF MILP

Huang et al.
[117]

2017 Global electricity PF LP &
MILP

Karali et al.
[118]

2017 USA industry PF LP

(continued on next page)
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Table 4 (continued).

Authors Year Scope

Fo
re

sig
ht

M
od

el
in

g

Handayani
et al. [119]

2019 Java–Bali electricity PF LP

Chapman
et al. [120]

2020 Global energy PF LP

Kim et al.
[91]

2020 South Korea energy MF &
PF

LP &
MILP

Xu et al.
[121]

2020 PV in China PF dyn.
NLP

Straus et al.
[122]

2021 Europe electricity PF MILP

Tibebu et al.
[123]

2021 USA electricity PF MILP

Felling et al.
[124]

2022 German electricity PF LP, MILP
&
Benders

Lee et al.
[125]

2022 South Korea industry MF PMP

Rathi and
Zhang [126]

2022 UK electricity PF MILP

Seck et al.
[127]

2022 Europe energy PF MILP &
dyn.

Zeyen et al.
[88]

2023 Europe energy PF MILP

s coal-fired ones. In the linear case, up- and down-ramping constraints
an be defined as follows, with 𝑟𝑢𝑝𝑐 and 𝑟𝑑𝑜𝑤𝑛

𝑐 being the maximum
dmissible ramping rates of component 𝑐 in %∕ℎ [147–149]:
𝑜𝑝
𝑐,𝑖,𝑟,𝑠,𝑡1 − 𝑥𝑜𝑝𝑐,𝑖,𝑟,𝑠,𝑡−1 ≤ 𝑟𝑢𝑝𝑐 𝑥𝑐𝑎𝑝𝑐,𝑖,𝑟𝛥𝑡 ∀𝑖 ∈ I, 𝑟 ∈ R, 𝑠 ∈ S, 𝑡 ∈ T (6a)
𝑜𝑝
𝑐,𝑖,𝑟,𝑠,𝑡−1 − 𝑥𝑜𝑝𝑐,𝑖,𝑟,𝑠,𝑡 ≤ 𝑟𝑑𝑜𝑤𝑛

𝑐 𝑥𝑐𝑎𝑝𝑐,𝑖,𝑟𝛥𝑡 ∀𝑖 ∈ I, 𝑟 ∈ R, 𝑠 ∈ S, 𝑡 ∈ T (6b)

Note that, in contrast to the cited sources, we ignore spinning
eserves and startup or shutdown rates in Eqs. (6a) and (6b).

inimum part load
In contrast to ramping, many other operational model features

ely on binary variables and therefore greatly increase computational
omplexity. The minimum part load is an example of this. Given the
act that an operation must be either zero or above the minimum part
oad 𝜃𝑝𝑙𝑐 (in %), a big-M formulation [150,151] can be applied using

the operational binary variable 𝑥𝑜𝑝,𝑏𝑖𝑛𝑐,𝑖,𝑟,𝑠,𝑡 ∈ {0, 1}, indicating whether
component 𝑐 is running or not:

𝑥𝑜𝑝𝑐,𝑖,𝑟,𝑠,𝑡 ≥ 𝜃𝑝𝑙𝑐 𝑥
𝑐𝑎𝑝
𝑐,𝑖,𝑟𝛥𝑡 −𝑀(1 − 𝑥𝑜𝑝,𝑏𝑖𝑛𝑐,𝑖,𝑟,𝑠,𝑡) ∀𝑖 ∈ I, 𝑟 ∈ R, 𝑠 ∈ S, 𝑡 ∈ T (7a)

𝑜𝑝
𝑐,𝑖,𝑟,𝑠,𝑡 ≤ 𝑀𝑥𝑜𝑝,𝑏𝑖𝑛𝑐,𝑖,𝑟,𝑠,𝑡 ∀𝑖 ∈ I, 𝑟 ∈ R, 𝑠 ∈ S, 𝑡 ∈ T (7b)

Eq. (7a) states that the operation is larger than the minimum part
oad if the component is running because, in that case, the second term
n the right-hand side is zero. If the component is not in operation,
he second term is subtracted from the first one and turns the right-
and side into a negative expression, which makes the constraint
on-binding. Eq. (7b), by contrast, is only binding if the component
s not running and thereby forces the operation rate to be zero in the
espective time step. Note that the smaller the big-M parameter is, the
ighter and thus less computationally expensive the resulting model
s [152].

inimum up- and down-times
Minimum up- and down-times require components to remain active

r inactive for a minimum amount of time before they can change
heir operational status, which is, like ramping, particularly relevant
or baseload plants. To limit the number of start-ups and shut-downs,

𝑜𝑝,𝑏𝑖𝑛,𝑠𝑢 𝑜𝑝,𝑏𝑖𝑛,𝑠𝑑
dditional binary variables 𝑥𝑐,𝑖,𝑟,𝑠,𝑡 ∈ {0, 1} and 𝑥𝑐,𝑖,𝑟,𝑠,𝑡 ∈ {0, 1} are p

10 
eeded, as presented by Van den Bergh et al. [148]:
𝑜𝑝,𝑏𝑖𝑛
𝑐,𝑖,𝑟,𝑠,𝑡 − 𝑥𝑜𝑝,𝑏𝑖𝑛𝑐,𝑖,𝑟,𝑠,𝑡−1 − 𝑥𝑜𝑝,𝑏𝑖𝑛,𝑠𝑢𝑐,𝑖,𝑟,𝑠,𝑡 + 𝑥𝑜𝑝,𝑏𝑖𝑛,𝑠𝑑𝑐,𝑖,𝑟,𝑠,𝑡 = 0 ∀𝑖 ∈ I, 𝑟 ∈ R, 𝑠 ∈ S, 𝑡 ∈ T (8a)

𝑜𝑝,𝑏𝑖𝑛
𝑐,𝑖,𝑟,𝑠,𝑡 ≥

𝑡
∑

𝑡′=𝑡+1−𝑀𝑈𝑇𝑐∕𝛥𝑡

𝑥𝑜𝑝,𝑏𝑖𝑛,𝑠𝑢
𝑐,𝑖,𝑟,𝑠,𝑡′

∀𝑖 ∈ I, 𝑟 ∈ R, 𝑠 ∈ S, 𝑡 ∈ T (8b)

− 𝑥𝑜𝑝,𝑏𝑖𝑛𝑐,𝑖,𝑟,𝑠,𝑡 ≥
𝑡

∑

𝑡′=𝑡+1−𝑀𝐷𝑇𝑐∕𝛥𝑡

𝑥𝑜𝑝,𝑏𝑖𝑛,𝑠𝑑
𝑐,𝑖,𝑟,𝑠,𝑡′

∀𝑖 ∈ I, 𝑟 ∈ R, 𝑠 ∈ S, 𝑡 ∈ T (8c)

Eq. (8a) specifies that either 𝑥𝑜𝑝,𝑏𝑖𝑛,𝑠𝑢𝑐,𝑖,𝑟,𝑠,𝑡 or 𝑥𝑜𝑝,𝑏𝑖𝑛,𝑠𝑑𝑐,𝑖,𝑟,𝑠,𝑡 become 1 if the
ctivation status of component 𝑐 changes between 𝑡 − 1 and 𝑡. Eq. (8b)
tates that component 𝑐 can be deactivated as soon as the start-up time
𝑈𝑇𝑐 has passed. Eq. (8c) states that component 𝑐 can be activated as

oon as the shut-down time 𝑀𝐷𝑇𝑐 has passed.

.2. Sources and sinks

Sources and sinks are not only affected by economic principles such
s price elasticity but also by modern consumption concepts such as
emand response, which will be described in the following.

.2.1. Price elasticity
For most goods other than luxury articles, known as Veblen goods

153], the demand increases with decreasing prices [154]. This espe-
ially holds true for mass-produced goods and commodities such as
nergy resources [155,156]. This principle is defined by the (inverse)
emand curve shown in Fig. 8a.

In a perfectly competitive market, supply is increased up to a point
t which the marginal cost of one additional commodity unit equals the
rice that can be obtained for it on the market, i.e., the intersection of
he supply and demand curves. This price, represented by the dashed
ine in Fig. 8a, is defined as the market-clearing price. When energy
emand is imposed as a fixed constraint, the market-clearing price
quals the dual variable of the ‘‘supply-equals-demand’’ constraint. This
ell-known fact is often used in dispatch models [157]. The demand

urve can be imagined as an infinite group of customers, only a few
f whom are willing to pay a lot for their energy. The lower the price,
owever, the more of them are willing to buy energy, increasing the
verall demand. Then, the area between the dashed line and demand
urve is the customer’s welfare, i.e., every customer on the demand
urve above the market-clearing price is willing to pay more for the
nergy than the market-clearing price. Similarly, the energy provider
akes a profit on every unit of energy as long as the marginal cost of

hat specific unit is lower than the market-clearing price.
This welfare-optimal market clearing only occurs if perfect competi-

ion with an infinite number of energy providers and complete market
nformation are assumed. A monopolist, however, could increase prices
n order to increase its profits. In Fig. 8a, the profit of the (single)
nergy provider is represented by the green area, whereas the welfare
f the consumers is given by the red one. The gray area is the so-called
eadweight loss – a loss in total welfare that occurs if the monopolist
aximizes its profit, i.e., the green area in Fig. 8a. Thereby, the violet

ectangle between the abscissa, ordinate, and demand curve stands for
he revenues of the energy provider.

The difference between welfare and profit optimization is an im-
ortant aspect with respect to modeling. Welfare optimization can
ccasionally be found in energy system frameworks such as TIMES [4,
,72,73], as well as DER-CAM and REMIND, according to Ringkjøb
t al. [1]. It can be easily implemented by discretizing the demand
urve using a series of energy sinks. As the energy sinks yield revenues
n a decreasing order, the most profitable one, i.e., the one generating
he highest revenue per energy unit, is supplied first, followed by the
ne with the second-highest revenue, etc., as illustrated in Fig. 8b.
his means that the order of price segments is automatically kept by
he energy system model, and it does not require additional binary
ariables or SOS2 constraints. The energy supply is increased up to a

oint at which the additional system costs equal the revenues generated
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Fig. 8. (a): supply, demand, market clearing, consumer surplus (red), and supplier profit (green); (b): discretization of the demand curve for welfare maximization; (c): discretization
of the revenue curve.
from the elastic energy sink and, more precisely, the market-clearing
price under perfect competition.

In contrast, a micro-economic point of view would focus on the
revenues generated by an energy provider, defined by the area of
the violet rectangle. As it is a non-linear concave function with a
maximum at the supply level that maximizes the rectangular area, its
discretization requires piecewise linear approximations, as shown in
Fig. 8c. However, to the best of the authors’ knowledge, this approach
has not been used by any of the reviewed frameworks.

3.2.2. Demand response
Demand response, or demand-side management, makes power de-

mand more flexible, which is advantageous for systems with intermit-
tent renewable energy sources. Some demand response measures can
even provide their services with no additional investment and with low
system costs, whereas others might be more costly but are associated
with significant potential, such as battery electric vehicles [158].

Demand response is commonly understood as controlled load shed-
ding, which is not designed for permanent demand reduction or the
temporal shifting of electricity demand within a predefined time win-
dow. According to the overview by Morales-España et al. [159], de-
mand response can be further categorized into self- and third-party-
dispatched load changes. Self-controlled load changes are implemented
by the user and stimulated by time-variable electricity tariffs, so-called
time of use (TOU) tariffs. In contrast, externally controlled load changes
are automated and serve to either reduce supply costs by reacting to
day-ahead and real-time markets or stabilize the system within the
balancing energy market. For instance, Germany has passed a law
making direct load control compulsory for heat pumps, non-publicly
accessible charging points for electric vehicles, systems for generating
cooling or storing electrical energy, and storage heaters as of January
1, 2024 (§14a EnWG).

According to Morales-España et al. [159], two main types of de-
mand response measures can be defined, which are depicted in Fig. 9a
and 9b, namely curtailment and load shifting.

Curtailment
Curtailment or load shedding focus on the reduction of load peaks.

This could be due to pure energy savings, grid bottlenecks, or a shortage
of backup capacity. It is assumed that the reduced load does not lead
to an increased load during the other time steps, as shown in Fig. 9a.
These processes occur, for example, if demand can be met by a perfect
substitute. While the option for supply curtailment is already given by
Inequality (1l), load shedding with a fixed sink operation 𝑥̄𝑜𝑝𝑐,𝑖,𝑟,𝑠,𝑡 can be
realized by adding an auxiliary energy source for shed energy to Eq. (1f)
(see [159] for a similar formulation):

𝑓𝑐,𝑔,𝑖,𝑟,𝑠,𝑡 = −𝑥̄𝑜𝑝𝑐,𝑖,𝑟,𝑠,𝑡 + 𝑥𝑜𝑝,𝑙𝑠𝑐,𝑖,𝑟,𝑠,𝑡 ∀𝑖 ∈ I, 𝑟 ∈ R, 𝑠 ∈ S, 𝑡 ∈ T (9a)

0 ≤ 𝑥𝑜𝑝,𝑙𝑠𝑐,𝑖,𝑟,𝑠,𝑡 ≤ 𝑥̄𝑜𝑝𝑐,𝑖,𝑟,𝑠,𝑡 ∀𝑖 ∈ I, 𝑟 ∈ R, 𝑠 ∈ S, 𝑡 ∈ T (9b)
11 
Fig. 9. (a): Curtailment or load shedding, which both limit the supply (curtailment)
or demand (load shedding) without replacement; (b): load shifting, which compensates
a reduced energy supply at one point in time with an increased supply at earlier or
later times while keeping the cumulative amount of supplied energy constant.

Note that load shedding usually causes additional costs that must be
added to the objective function:

𝑜𝑏𝑗𝑙𝑠 = 𝑜𝑏𝑗 +
∑

𝑐

∑

𝑖

∑

𝑟

∑

𝑠

∑

𝑡
𝑝𝑠𝑐

𝑜𝑝,𝑙𝑠
𝑐,𝑖,𝑟,𝑠,𝑡𝑥

𝑜𝑝,𝑙𝑠
𝑐,𝑖,𝑟,𝑠,𝑡 (10)

Load shifting
Load shifting can avoid load peaks as well, but this load decrease

leads to an advanced or postponed load catch-up during another point
in time, e.g., when sufficient amounts of electricity from renewables are
available, as shown in Fig. 9b. The net sum might be null or positive.
Examples are manifold, especially in heavy industry, where some pro-
duction processes are flexible over time (see, e.g., Gils [160]). There are
various approaches for modeling demand response. Simplified models
incorporate load shifting in a similar way to energy storage [161],
while more complex approaches explicitly consider shifting durations,
rest periods, and maximum energy volumes [162]. Due to the interac-
tion of charging and driving processes, different approaches are used
for battery electric vehicles, in which, for example, maximum and
minimum battery levels can be incorporated [163]. Load shifting can
be modeled using additional variables for increases in demand 𝑥𝑜𝑝,𝑙𝑠+𝑐,𝑖,𝑟,𝑠,𝑡
and decreases 𝑥𝑜𝑝,𝑙𝑠−𝑐,𝑖,𝑟,𝑠,𝑡 ∀𝑖 ∈ I, 𝑟 ∈ R, 𝑠 ∈ S, 𝑡 ∈ T (see [159] for a similar
formulation):

𝑓𝑐,𝑔,𝑖,𝑟,𝑠,𝑡 = −
(

𝑥̄𝑜𝑝𝑐,𝑖,𝑟,𝑠,𝑡 + 𝑥𝑜𝑝,𝑙𝑠+𝑐,𝑖,𝑟,𝑠,𝑡 − 𝑥𝑜𝑝,𝑙𝑠−𝑐,𝑖,𝑟,𝑠,𝑡

)

(11a)
𝑡+𝐿𝑆𝑇𝑊 −𝛥𝑡

∑

𝑡
𝑥𝑜𝑝,𝑙𝑠+𝑐,𝑖,𝑟,𝑠,𝑡 =

𝑡+𝐿𝑆𝑊 −𝛥𝑡
∑

𝑡
𝑥𝑜𝑝,𝑙𝑠−𝑐,𝑖,𝑟,𝑠,𝑡 (11b)

𝑥̄𝑜𝑝,𝑚𝑖𝑛𝑐,𝑖,𝑟,𝑠,𝑡 ≤ 𝑥̄𝑜𝑝𝑐,𝑖,𝑟,𝑠,𝑡 − 𝑥𝑜𝑝,𝑙𝑠−𝑐,𝑖,𝑟,𝑠,𝑡 ≤ 𝑥̄𝑜𝑝𝑐,𝑖,𝑟,𝑠,𝑡 ≤ 𝑥̄𝑜𝑝𝑐,𝑖,𝑟,𝑠,𝑡 + 𝑥𝑜𝑝,𝑙𝑠+𝑐,𝑖,𝑟,𝑠,𝑡 ≤ 𝑥̄𝑜𝑝,𝑚𝑎𝑥𝑐,𝑖,𝑟,𝑠,𝑡 (11c)

Eq. (11a) allows for an increase and a decrease in demand, and
Eq. (11b) ensures that the increased and reduced demands balance each
other within the load shift time window (LSTW). Inequality (11c) limits
the maximum shifted energy within each time step and maintains the
positivity of 𝑥𝑜𝑝,𝑙𝑠+𝑐,𝑖,𝑟,𝑠,𝑡 and 𝑥𝑜𝑝,𝑙𝑠−𝑐,𝑖,𝑟,𝑠,𝑡, respectively. Note that different defini-
tions for the load shift time window can be found in the literature [164–
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167], many of which focus on a shift into the future only [164,167].
Furthermore, additional costs may arise for the shifted load.

3.3. Converters

Converters link different energy carriers and commodities, making
them especially crucial for sector-coupled models and those dispatch
models that explicitly consider fossil fuel consumption. Although the
conversion factor 𝛾𝑐,𝑔,𝑖,𝑟,𝑠,𝑡 in Eq. (1g) was assumed to be constant, real
onverters can exhibit significantly non-linear part load efficiencies.
hese can be modeled by piecewise linear functions that couple the
peration rate of one commodity with those of the others [168–172].
he approach is analogous to the piecewise linear modeling of CAPEX
resented in Section 3.1.1. It must be noted that efficiencies can depend
n various parameters and that they are not necessarily defined by the
pecific partload rates alone (see, e.g., [173]).

.4. Storage

Storage is pivotal for the future energy system, given the rising share
f intermittent renewable energy sources. In the modeling context, it is
epresented by a certain maximum power level and energy level, as well
s losses. Apart from the basic formulation in Eq. (1m) with constant
harge and discharge efficiencies, the power constraint of the storage
ight depend on its filling level, i.e., its state of charge (SOC). This

s, for instance, the case for lithium-ion batteries, which cannot easily
ope with high charging rates at high or low SOC levels [174].

Typically, losses are categorized into charging losses, discharging
osses, and self-discharge losses. Together with the power- and energy-
elated capacity-specific costs of storage components, these losses are
rucial parameters for deciding whether a storage technology should be
perated in a dynamic daily or preferably static seasonal manner [175,
76].

harging and discharging losses
Most storage devices have losses due to charging or discharging;

.g., the efficiency of water storage is mainly determined by the effi-
iency of the pump, but also batteries generate heat during charging
r discharging processes – especially at high charging rates [174].
onsidering this in energy system models is important because their
sage is strongly overestimated otherwise [177].

elf-discharge
Apart from losses that occur during storage usage, self-discharge is

nother severe issue for most storage systems. This rate is compara-
ively low for some technologies, such as hydrogen storage, whereas
t might be significant for others, such as flywheels. This can be
onsidered by equipping Eq. (1m) with a self-discharge rate 𝜂𝑠𝑑 in 1∕𝛥𝑡
nd ∀ 𝑖 ∈ I, 𝑟 ∈ R, 𝑠 ∈ S, 𝑡 ∈ T, which leads to an exponential decay
unction [178]:

𝑆𝑂𝐶
𝑐,𝑖,𝑟,𝑠,𝑡+1 =

(

1 − 𝜂𝑠𝑑
)

𝑥𝑆𝑂𝐶
𝑐,𝑖,𝑟,𝑠,𝑡 + 𝜂𝑐ℎ𝑐,𝑖,𝑟,𝑠,𝑡𝑥

𝑜𝑝,𝑐ℎ
𝑐,𝑖,𝑟,𝑠,𝑡 −

𝑥𝑜𝑝,𝑑𝑖𝑠
𝑐,𝑖,𝑟,𝑠,𝑡

𝜂𝑑𝑖𝑠𝑐,𝑖,𝑟,𝑠,𝑡

(12)

.5. Transmission and distribution

Depending on the carrier, energy transport is subject to significant
hysical constraints. Some of the most commonly used ones are phase
ngles in alternating current (AC) networks, as well as temperature
nd mass flow dependence in heating networks. We will review the
athematical formulations for these in the next two Sections 3.5.1 and
.5.2.

.5.1. AC power grid
In an alternating current (AC) network, the starting point of the

heoretical derivation of power flows is the line equation for the active
12 
ower 𝛷𝑙 and reactive power 𝑄𝑙 over a transmission line 𝑙 ∈ M𝑡𝑟𝑎𝑛𝑠

onnecting a bus/region/node 𝑟 ∈  with another bus/region/node
′ ∈ ∖{𝑟} [179]:

𝛷𝑙 = 𝛷𝑙(𝛿𝑟,𝑟′ , 𝑉𝑟,𝑟′ ) = |𝑉𝑟|
2𝑔𝑙 + |𝑉𝑟||𝑉𝑟′ |

(

𝑔𝑙 cos(𝛿𝑟 − 𝛿𝑟′ ) + 𝑏𝑙 sin(𝛿𝑟 − 𝛿𝑟′ )
) (13)

𝑙 = 𝑄𝑙(𝛿𝑟,𝑟′ , 𝑉𝑟,𝑟′ ) = |𝑉𝑟|
2𝑏𝑙 + |𝑉𝑟||𝑉𝑟′ |

(

𝑔𝑙 sin(𝛿𝑟 − 𝛿𝑟′ ) − 𝑏𝑙 cos(𝛿𝑟 − 𝛿𝑟′ )
) (14)

with 𝑉𝑟,𝑟′ being the voltage magnitudes at buses/regions/nodes 𝑟 and
𝑟′, 𝛿𝑟,𝑟′ being the voltage angles, and 𝑏𝑙, 𝑔𝑙 being the susceptance and
conductance of the transmission line. Below, this section follows the
derivations of Kies [180] on the nodal injection pattern. It introduces
the so-called DC-approximation for load flows in AC networks, which
can also be found in textbooks.

The aim of the DC approximation is the linearization of the above-
mentioned non-linear equations in order to be able to include the load
flows, i.e., the active power, in a linear optimization problem. It is
based on the following four assumptions:

1. The reactive power in an AC network is small and can conse-
quently be neglected.

2. Voltage angle differences are also small, hence sin(𝛿𝑟 − 𝛿𝑟′ ) ≈
𝛿𝑟 − 𝛿𝑟′ ,∀𝑟, 𝑟′ ∈ 

3. The conductance is much smaller than the susceptance, such that
the corresponding term can be neglected.

4. Voltage magnitudes are approximately one.

When these assumptions hold, Eq. (13) can finally be simplified to:

𝛷𝑙 = 𝑏𝑙(𝛿𝑟 − 𝛿𝑟′ ) = 𝑓𝑙 (15)

This equation expresses the load flow along a transmission line 𝑙 as a
function of the voltage angles at the end regions 𝑟 and 𝑟′. Due to its
similarity to the load flow in DC networks, where the voltage angles
are replaced by the voltage magnitudes, this equation is called the DC
approximation [180].

The physicality of the flows 𝑓𝑙 is ensured by invoking Kirchhoff’s
current (KCL) and voltage law (KVL), which state that:

1. The power reaching each region must equal the power with-
drawn from it, either via attached lines or by consumption,
and

2. All partial voltages, i.e., differences in the electrical potential,
along a closed cycle sum up to zero.

For the subsequent derivations, we must define the following three
matrices:

1. The incidence matrix 𝐊 with:

𝑘𝑟𝑙 =

⎧

⎪

⎨

⎪

⎩

1 if line l begins at region r
−1 if line l ends at region r
0 otherwise.

(16)

2. The diagonal susceptance matrix 𝐗 with 𝑥𝑙𝑙 = 𝑏𝑙 and
3. The network Laplacian 𝜦 = 𝐊𝐗𝐊𝑇

With the incidence matrix, the flows can be expressed as:

𝑓𝑙 = 𝑏𝑙
∑

𝑟
𝑘𝑟𝑙𝛿𝑟 ,∀𝑙 ∈ M𝑡𝑟𝑎𝑛𝑠 (17)

and KCL reads:

𝑝𝑟 =
∑

𝑙
𝑘𝑟𝑙𝑓𝑙 (18)

=
∑

𝑟′
𝜆𝑟𝑟′𝛿𝑟′ ,∀𝑟 ∈  (19)

where 𝑝𝑟 is the net active power at bus/region/node 𝑟, i.e., the differ-
ence between consumption and generation, and 𝜆𝑟𝑟′ is the element of
the network Laplacian 𝜦 [180].

From these considerations, several different methods to determine

the flow of electricity in the framework of a power system model can
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be derived, for instance the well-known power transfer distribution
factors (PTDF; see Section 4.3). Here, the formulation used by Hörsch
et al. [181] will be introduced first: In order to determine the active
power flow, the voltage angles are set as auxiliary variables to the linear
program, and the following corresponding constraints are invoked:
|

|

|

|

|

∑

𝑟

(

𝑋𝐾𝑇 )
𝑙𝑟 𝛿𝑟

|

|

|

|

|

≤ 𝑓𝑙 ,∀𝑙 ∈ M𝑡𝑟𝑎𝑛𝑠 (20)

𝑝𝑛 =
∑

𝑟′
𝜆𝑟𝑟′𝛿𝑟′ ,∀𝑟 ∈  (21)

𝛿0 = 0 (22)

Here, Eq. (20) prohibits line overloading, Eq. (21) ensures the ful-
fillment of KCL, and Eq. (22) fixes the voltage angle at a reference
bus (the slack) because Eq. (21) is under-determined. Compared to
the PTDF approach, this formulation increases the number of decision
variables and equality constraints. However, the PTDF approach leads
to a significant increase in the solution time for a number of different
test cases caused by dense matrices in the PTDF formulation and the
corresponding large sizes of the linear programming files [181].

In a more simplified setup, the transmission lines can be replaced
by simplified high-voltage direct current (HVDC) links. In this case,
the load flows along these links are introduced as additional decision
variables, and the only constraint ensures that these flows do not
exceed the net transfer capacity of the respective link [182].

3.5.2. Heat grid
Heat grids are usually organized as two-pipe systems with one flow

line (fl) and one return line (re). The flow line transports the warm
fluid from the source to the sink. After heat has been extracted from the
fluid at the sink, the fluid flows back to the source via the return line
at a lower temperature. The energy balance in a heat grid is calculated
according to [183]:

𝑄̇𝑠 =
∑

𝑐
𝑄̇𝑑,𝑐 + 𝑄̇𝑙𝑜𝑠𝑠,𝑓 𝑙 + 𝑄̇𝑙𝑜𝑠𝑠,𝑟𝑒 (23)

ith 𝑄̇𝑠 being the supplied heat at source 𝑠, 𝑄̇𝑑,𝑐 being the heat demand
f consumer 𝑐, and 𝑄̇𝑙𝑜𝑠𝑠 being the thermal losses occurring in the flow
nd return line [183].

The transmission line in a heat grid is defined as the heat trans-
orted along a pair of flow and return lines. The sink symbolizes all
onnected consumers ∑

𝑐 𝑄̇𝑑,𝑐 , which can be buildings or the adjacent
transmission lines. Therefore, the flow of a transmission line in a heat
grid is formed according to:

𝑓𝑙 =
∑

𝑐
𝑄̇𝑑,𝑐 = 𝑄̇𝑠 − 𝑄̇𝑙𝑜𝑠𝑠,𝑓 𝑙 − 𝑄̇𝑙𝑜𝑠𝑠,𝑟𝑒 ,∀𝑙 ∈ M𝑡𝑟𝑎𝑛𝑠. (24)

The thermal losses in the flow and return lines can be calculated
using the temperature difference between the fluid and ground temper-
ature 𝛥𝑇𝑔𝑟𝑜𝑢𝑛𝑑 , as well as the heat transfer coefficient 𝑈𝐴 of the grid:

𝑄̇𝑙𝑜𝑠𝑠 = 𝛥𝑇𝑔𝑟𝑜𝑢𝑛𝑑 ⋅ 𝑈𝐴. (25)

The optimization of heat grids usually focuses on the energy balance
using linear formulations [184]. Therefore, the temperature depen-
dency of the heat flow is neglected, and constant temperature values
must be assumed to avoid non-linearities. An alternative approach is
provided by Schönfeldt et al. [185], where several discrete temperature
levels are defined. In this way, the non-linearities are avoided, but the
temperature dependency can only be modeled to a limited extent. For
linear heat grid flows, i.e., assuming constant or discrete temperature
levels, Eq. (24) can be expressed as follows:

𝑓𝑙 =
∑

𝑐
𝑄̇𝑑,𝑐 = 𝑄̇𝑠 − 𝑈𝐴 ⋅ (𝛥𝑇𝑔𝑟𝑜𝑢𝑛𝑑,𝑓 𝑙 + 𝛥𝑇𝑔𝑟𝑜𝑢𝑛𝑑,𝑟𝑒) ,∀𝑙 ∈ M𝑡𝑟𝑎𝑛𝑠. (26)

If the temperature dependency is not neglected, the calculation of
the heat flow:
̇
𝑄 = 𝑚̇ ⋅ 𝑐𝑝 ⋅ (𝑇𝑓𝑙 − 𝑇𝑟𝑒) (27) p

13 
becomes non-linear because the mass flow 𝑚̇ and fluid temperature
𝑇 are operational variables. As the specific heat capacity 𝑐𝑝 of the fluid
is constant, the non-linear formulation constitutes a quadratic problem.
To ensure a correct heat flow, the following temperature constraints
between the source and sink are required:

𝑇𝑓𝑙,𝑠𝑜𝑢𝑟𝑐𝑒 ≥ 𝑇𝑓𝑙,𝑠𝑖𝑛𝑘 (28)

𝑇𝑟𝑒,𝑠𝑜𝑢𝑟𝑐𝑒 ≤ 𝑇𝑟𝑒,𝑠𝑖𝑛𝑘 (29)

Hering et al. [186] present a simplified formulation for non-linear
heat grid models by neglecting the spatial distribution of consumers
and assuming the grid as a water reservoir. To reduce the computa-
tional complexity of the problem, the temperature difference between
the flow and return lines at the sinks in the grid can be set to a constant
value [187].

The temperature difference between the fluid and ground 𝛥𝑇𝑔𝑟𝑜𝑢𝑛𝑑
can be calculated for a fixed ground temperature 𝑇𝑔𝑟𝑜𝑢𝑛𝑑 for both heat
grid lines in a simplified manner according to [187] as follows:

𝛥𝑇𝑔𝑟𝑜𝑢𝑛𝑑 =
𝑇𝑠𝑜𝑢𝑟𝑐𝑒 + 𝑇𝑠𝑖𝑛𝑘

2
− 𝑇𝑔𝑟𝑜𝑢𝑛𝑑 . (30)

Considering the temperature dependency of the heat flow in a heat
grid, the flow is formulated as follows:

𝑓𝑙 =
∑

𝑐
𝑄̇𝑑,𝑐 = 𝑚̇ ⋅ 𝑐𝑝 ⋅ (𝑇𝑓𝑙,𝑠𝑜𝑢𝑟𝑐𝑒 − 𝑇𝑟𝑒,𝑠𝑜𝑢𝑟𝑐𝑒) − 𝑈𝐴⋅

( 𝑇𝑓𝑙,𝑠𝑜𝑢𝑟𝑐𝑒 + 𝑇𝑓𝑙,𝑠𝑖𝑛𝑘
2

+
𝑇𝑟𝑒,𝑠𝑖𝑛𝑘 + 𝑇𝑟𝑒,𝑠𝑜𝑢𝑟𝑐𝑒

2
− 2 ⋅ 𝑇𝑔𝑟𝑜𝑢𝑛𝑑

)

,∀𝑙 ∈ M𝑡𝑟𝑎𝑛𝑠.
(31)

The storage effects in the heat grid can be considered by defining
the corresponding temperature in the flow and return line as state
variables, so 𝑥𝑆𝑂𝐶

𝑓𝑙,𝑔𝑟𝑖𝑑,𝑡 = 𝑇𝑓𝑙,𝑔𝑟𝑖𝑑,𝑡 and 𝑥𝑆𝑂𝐶
𝑟𝑒,𝑔𝑟𝑖𝑑,𝑡 = 𝑇𝑟𝑒,𝑔𝑟𝑖𝑑,𝑡 describe the

current SOC in the corresponding line of the heat grid. Thus, the time
derivatives of the flow and return line temperature describe the chang-
ing rate of the SOC [186]. The derivative for the flow line temperature
is calculated according to [186]:
𝛥𝑇𝑓𝑙,𝑔𝑟𝑖𝑑,𝑡

𝛥𝑡
=

𝑚̇𝑠𝑜𝑢𝑟𝑐𝑒 ⋅ (𝑇𝑓𝑙,𝑠𝑜𝑢𝑟𝑐𝑒,𝑡 − 𝑇𝑓𝑙,𝑔𝑟𝑖𝑑,𝑡)
𝑚𝑔𝑟𝑖𝑑

−
𝑈𝐴 ⋅ (𝑇𝑓𝑙,𝑔𝑟𝑖𝑑,𝑡 − 𝑇𝑔𝑟𝑜𝑢𝑛𝑑 )

𝑐𝑝 ⋅ 𝑚𝑔𝑟𝑖𝑑
(32)

with 𝑇𝑓𝑙,𝑠𝑜𝑢𝑟𝑐𝑒,𝑡 being the flow temperature at the heat source and
𝑇𝑓𝑙,𝑔𝑟𝑖𝑑,𝑡 being the actual grid temperature in the flow line. Furthermore,
̇ 𝑠𝑜𝑢𝑟𝑐𝑒 describes the mass flow at the heat source and 𝑚𝑔𝑟𝑖𝑑 the total

fluid mass in the grid.
Similarly, the storage effects in the return line are calculated as

follows [186]:
𝛥𝑇𝑟𝑒,𝑔𝑟𝑖𝑑,𝑡

𝛥𝑡
=

𝑚̇𝑠𝑜𝑢𝑟𝑐𝑒 ⋅ (𝑇𝑟𝑒,𝑠𝑖𝑛𝑘,𝑡 − 𝑇𝑟𝑒,𝑔𝑟𝑖𝑑,𝑡)
𝑚𝑔𝑟𝑖𝑑

−
𝑈𝐴 ⋅ (𝑇𝑟𝑒,𝑔𝑟𝑖𝑑,𝑡 − 𝑇𝑔𝑟𝑜𝑢𝑛𝑑 )

𝑐𝑝 ⋅ 𝑚𝑔𝑟𝑖𝑑
(33)

with 𝑇𝑟𝑒,𝑔𝑟𝑖𝑑,𝑡 being the return line temperature and 𝑇𝑟𝑒,𝑠𝑖𝑛𝑘,𝑡 being the
temperature at the sink.

4. Boundary conditions

Apart from purely technical component constraints, energy systems
face additional constraints such as geological, geographical, or social
limitations, also referred to as technology potentials, and regulatory
frameworks.

4.1. Potentials

Potentials are simple constraints that limit the maximum installable
capacity of a technology in a region and investment period:

𝑥𝑐𝑎𝑝𝑐,𝑖,𝑟 ≤ 𝑥𝑐𝑎𝑝,𝑝𝑜𝑡𝑐,𝑖,𝑟 ∀𝑖 ∈ I, 𝑟 ∈ R (34a)

The potential of a technology is defined by geographical factors
uch as the total available land defined by distance restrictions to
nhabited areas or surface slopes [188], but also technical ones such
s the technology-specific space consumption per capacity in an eli-
ible area [189]. These potentials also depend on the concrete com-
onent types of a technology, e.g., wind turbine types, leading to
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standalone potential analyses such as, e.g., conducted by Ryberg et al.
[190], Caglayan et al. [191], and reviewed by Pelser et al. [192] for
wind power, conducted by Risch et al. [193] for wind power and
photovoltaic, as well as by Maier et al. [194] for photovoltaic.

Similar to price elasticity, regions can contain a distribution of
more and less profitable sites, which can be modeled as a discrete set
of separate technology potentials with distinct capacity factor char-
acteristics. For instance, Caglayan et al. [195] proposed a discretized
set of wind potentials sorted by levelized cost of electricity (LCOE)
based on status quo price structures. Especially in electricity-centered
systems, the LCOE is the only metric that has become an omnipresent
standard for all kinds of systems, be it for plant siting or microgrid
assessments [196]. In this way, a supply elasticity similar to the price
elasticity of energy demands can be realized by first expanding the most
profitable generation sites.

4.2. Regulations

Particularly with regard to the legal framework, contemporary
optimization-based frameworks for energy system modeling only reflect
interactions with other economic sectors to a limited extent but respect
externally defined economic and ecological constraints. Still, it is vital
that regulations align the incentives of all stakeholders and allow for
efficiently designed and operated energy systems [197].

Regulations and subsidy mechanisms can be almost freely designed,
address arbitrary components, and refer to installed capacities, cumula-
tive operating hours, component-specific emissions, cross-combinations
of entire system setups, etc. These factors make it difficult to formulate
generally applicable modeling approaches and frameworks but remain
an important source of uncertainty when modeling energy systems
(see Table 5). Therefore, the following section refrains from providing
mathematical formulations for the far too diverse field of regulations.
Instead, we provide an aspect-oriented and non-exhaustive overview
of occasionally integrated regulatory constraints and incentives. For a
more methodological approach to embedding these regulatory mecha-
nisms into optimization problems with single objective functions, we
refer the reader to Section 5, which provides general concepts to
integrate aspects such as CO2 restrictions into energy system models.

4.2.1. Volume-related restrictions
Volume-related restrictions are those in which model components,

i.e., sources, sinks, converters, storage systems, or transmission units,
are restricted in their design and/or operation without a direct impact
on cash flows. The regulatory implications are not implemented via
price mechanisms but via explicit restrictions on commodities or com-
ponents. Therefore, implementation in energy system models is carried
out via the formulation of constraints for the respective commodities
or components, as well as the parameterization of the components,
whereas the objective function remains unaffected. Volume-related
restrictions that are depicted in energy system models in the literature
include, among others, the limitation or ban of CO2 emissions, mini-

um renewable energy utilization shares [198,199], or limitations in
eed-in and minimum self-consumption rates for prosumers [171,200],
.g., electricity generated from CHP units [200]. Notably, almost ev-
ry contemporary framework for energy system modeling reviewed in
able 12 is capable of modeling emissions explicitly, a trend that has
lready been demonstrated by Ringkjøb et al. [1] in 2018, making
hem the most frequently employed subject to regulatory restrictions
n frameworks. By contrast, other regulatory restrictions are far less
requently integrated into frameworks, given that they are highly de-
endent on national law and frameworks are usually not designed
o optimally represent a single nation’s energy-related regulations.
his finding is supported by the fact that those publications consid-
ring nation-specific regulations have conducted their analyses with
ustom-made energy system models instead of framework instances.
14 
4.2.2. Price-related restrictions, subsidies, and market characteristics
Price-related restrictions, subsidies, and market characteristics are

regulations with an influence on prices, costs, and revenues. They
work via price mechanisms and monetary cash flows and must there-
fore be implemented by means of corresponding terms in the objec-
tive function. These can be mapped as constant or variable values
and affect capital and/or operating costs. As these regulations are
usually complex, are subject to additional conditions regarding the
model components and commodities, and depend on binary variables
(e.g., subsidies), they often require a set of additional constraints
besides their representation in the objective function. This, in turn,
impedes the above-mentioned integration into generic frameworks for
energy system modeling. Price-related restrictions, subsidies, and mar-
ket characteristics that are depicted in energy system models in the
literature include CO2 pricing schemes and taxes [201,202], modali-
ties for power exchange with the grid [199], surcharges on resource
prices, as well as subsidies for investments in renewable power gen-
eration units and electricity-based consumer appliances such as heat
pumps or electric vehicles [171,198,199,203–206]. Others are pricing
schemes for consumed electricity based on certain end-use technolo-
gies [171,207], as well as time-of-use tariffs [208,209]. For a renewable
energy system with PV, micro-wind turbine installations, battery stor-
age [171,209–211], special above-market feed-in remuneration [171,
209,210,212] was studied. Furthermore, levies on self-consumed elec-
tricity [171,206], and tax exemptions [171,207,213] were investigated.
While pricing schemes for commodities and feed-in tariffs usually influ-
ence operating costs, subsidies can affect both capital and operating
costs. In addition to their representation in objective functions and
constraints, pricing schemes for commodities and feed-in tariffs can also
be implemented via scenario and sensitivity analyses.

4.2.3. Risks and risk management
Regulations regarding risk management in energy systems include,

amongst others, n-1 criteria, reserve margins, firm capacities to en-
sure the security of supply in energy systems, and the stability of
network operations. In the literature, energy system models are used
for scheduling reserves, for instance, by means of security-constrained
unit commitment, accounting for n-1 criteria, and forecasting uncertain
generation from renewable energy sources, as well as load. Reserves
are typically modeled as constraints on the hourly generation capacity,
with stochastic modeling representing risks and uncertainties [214].

4.3. System security and resource adequacy

System cost minimization alone does not account for the need to
ensure the security of supply in the event of forced outages of system
components. To ensure this, different approaches exist, ranging from
system monitoring over contingency analysis to security-constrained
optimal power flow [179]. For the latter, the resilience of the system to
a series of contingencies is tested and integrated into how the system
is operated. To derive a complete picture of the system’s resilience,
one would, in principle, need to consider the failure of any of the
system’s components. As this might lead to several thousand power flow
calculations, so-called linear sensitivity factors are used. Two types can
be distinguished [179]:

1. Power transfer distribution factors (PTDFs)
2. Line outage distribution factors (LODFs)

These factors estimate the average change in line flow for any change
in generation (in the case of PTDFs) or any potential outage of trans-
mission lines (in the case of LODFs), respectively. They are defined
as:

PTDF𝑟,𝑟′ ,𝑙 =
𝛥𝑓𝑙
𝛥𝑃𝑟𝑟′

(35)

LODF𝑙,𝑘 =
𝛥𝑓𝑙

0
(36)
𝑓𝑘



M. Hoffmann et al. Advances in Applied Energy 16 (2024) 100190 
Table 5
Studies on regulation in energy system optimization models.

Authors Year Scope Type

Lozano et al. [212] 2009 Electricity feed-in remuneration MILP

Lozano et al. [200] 2010 Maximum power, minimum
efficiency, and self consumption
quota for cogeneration systems

MILP

Mehleri et al. [201] 2012 Carbon emission tax MILP

Akbari et al. [202] 2014 Carbon emission tax MILP

Piacentino et al.
[213]

2015 Tax exemption for efficient
cogeneration systems

MILP

Steinbach [198] 2016 Minimum utilization shares for RE
in new buildings and alternative
measures according to EEWärmeG,
Investment grants and subsidized
loans for renewable heat
generators, large heat storage
systems, heating networks and
biogas upgrading systems

Agent-based
investment
decision-
making
model

Harb et al. [207] 2016 CHP tax exemptions, HP electricity
tariffs

MILP

Klein and Deissenroth
[210]

2017 PV remuneration tariffs, feed-in
tariffs

NPV, MCS,
Prospect
utility model

Renaldi et al. [203] 2017 Electricity tariffs, subsidy for
non-fossil fuel domestic heating
systems

MILP

Schütz et al. [171] 2017 Prosumer regulations: EEG feed-in
limit, EEG levy on self-consumed
electricity, EEG feed-in
remuneration, payment for
self-consumption and feed-in from
CHPs, financial support for battery
assisted PV systems, fuel tax
exemption/refund for CHP units,
cheaper electricity tariff for HPs,
Multiple electricity and gas tariffs
with different fixed and variable
costs and different emission factors

MILP

Antenucci and
Sansavini [214]

2018 Electricity reserves, reserve margins,
n-1 security

MILP

González-Mahecha
et al. [211]

2018 Utility and feed-in electricity tariff
schemes, bi-hourly tariffs

MILP

Luo et al. [204] 2019 Subsidies for a standalone
multi-generation energy system

Bi-level
optimization

Benalcazar et al.
[205]

2020 Capital subsidies across all
distributed generation technologies,
capital subsidies for renewable
technologies, capital subsidies for
PV technologies, capital subsidies
for wind technologies, diesel price
subsidies

LP

Pinto et al. [206] 2020 Self-consumption subsidy and tax MILP

Pina et al. [199] 2021 Power exchange modalities,
subsidies and surcharges on energy
prices and CAPEX, ban on fossil
fuels

MILP

Marocco et al. [208] 2021 Time-of-use tariffs MILP

Sarfarazi et al. [209] 2023 PV self-consumption, Prosumer
regulations, Real-time pricing,
variable feed-in tariff, dynamic EEG
levy

MILP, ABM

with 𝑟 ∈  being the index of the bus/region/node where power is
injected, 𝑟′ ∈ ∖{𝑟} the index of the bus/region/node where power
is withdrawn, 𝛥𝑃𝑟𝑟′ being the power transferred from bus/region/node
𝑟 to 𝑟′, and 𝛥𝑓𝑙 being the change in power flow on line 𝑙 ∈ M𝑡𝑟𝑎𝑛𝑠

connected to 𝛥𝑃𝑟𝑟′ [179].
Assuming that a generator must reduce its power generation by

𝛥𝑃 = −𝑃 0 and that a reference generator is able to compensate for
𝑟𝑟′ 𝑟
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Fig. 10. Multi-objective optimization concepts. (a): Pareto front; (b): weighted sum
method; (c): 𝜀-constraint method; (d): modeling to generate alternatives.

this loss in power by ramping its own generation up, the resulting new
flow 𝑓 ′

𝑙 on line 𝑙 can be computed via:

𝑓 ′
𝑙 = 𝑓 0

𝑙 + PTDF𝑟,𝑟𝑒𝑓 ,𝑙𝛥𝑃𝑟𝑟′ (37)

Similarly, the impact of losing (opening) a transmission line on the flow
of the remaining lines can be estimated from:

𝑓 ′
𝑙 = 𝑓 0

𝑙 + LODF𝑙,𝑘𝑓 0
𝑘 (38)

Here, 𝑓 0
𝑙 and 𝑓 0

𝑘 denote the original flow on these lines (𝑙, 𝑘 ∈ M𝑡𝑟𝑎𝑛𝑠)
prior to a loss in capacity [179].

Hence, PTDF𝑟,𝑟′ ,𝑙 and LODF𝑙,𝑘 provide the sensitivity of the flow on
line 𝑙 regarding a potential loss of power transferred from a generator at
bus 𝑟 to a generator at bus 𝑟′ or an opening of line 𝑘, respectively. It can
be shown that both PTDF and LODF only depend on system parameters
and not on actual voltages and/or loads [179]. This means they can be
precalculated without performing any power flow calculations. Using
these factors, a contingency analysis can be performed, and the power
flow can be adjusted to avoid the largest risks of system failure. This
procedure is commonly referred to as security-constrained optimal
power flow [179].

In the process of planning power systems, the aspect of system
security is addressed by applying the so-called n-1 rule, stating that
the system must stay in a safe mode of operation when any of the
system components are taken out of service. This can, for instance, be
done by limiting the flow on the lines to a certain percentage of the
installed capacity or by invoking additional constraints, which ensures
that the operation of the system always plans for sufficient reserves
(see, e.g., [215]). Power systems planned in such a way are considered
adequate, i.e., they are able to ensure the security of supply with
reasonable probability. As part of their policy mandates, transmission
system operators must regularly prove this adequacy. This process is
called resource adequacy assessment.2

5. (Multi-criteria) objectives

The planning and operation of energy systems often involves mul-
tiple and sometimes opposing objectives, such as low costs and low
emissions. The most common concepts to address multiple objectives
in energy system modeling are illustrated in Fig. 10 and reviewed in
the following.

5.1. Pareto-optimal fronts

Pareto-optimal fronts are a basic concept of multi-criteria optimiza-
tion, which is shown in Fig. 10a. The concept states that value tuples
along two or multiple dimensions of objectives are considered Pareto-
efficient if there is no solution, which is at least as good with respect

2 For the European Resource Adequacy Assessment (ERAA) implemented by
ENTSO-E, see https://www.entsoe.eu/outlooks/eraa/.

https://www.entsoe.eu/outlooks/eraa/
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to all objectives and better with respect to at least one [216,217].
Assuming x1 and x2 are to be minimized, all values along the solid red
line are Pareto-efficient because for each point on the line, it holds that
there exists no configuration of x1 and x2 that is at least as good with
respect to one of the objectives and strictly better with respect to the
other one.

5.2. Weighted sum method

As optimization models normally search for a single optimal so-
lution, Pareto fronts are not directly accessible. Instead, a number of
different methods exist to determine single Pareto-efficient solutions.
The method of weighted sums is illustrated in Fig. 10b and combines
different objectives by assigning individual costs to each criterion and
summing them up. The integration of carbon emission costs into the
total system cost minimization is a popular example (see, e.g., [218–
223]) as CO2 certificates have become a marketable commodity and
so the considered CO2 costs have practical implications. Other than
that, approaches with theoretical penalty costs exist for non-financial
objectives, e.g., minimizing land use along with total system costs.
Graphically, the approach can be interpreted as a rotation of the
objective function’s gradient: as shown in Fig. 10b, the gradient would
be horizontal in a case in which only x1 is minimized, whereas it
would be vertical if only x2 was minimized. Linear combinations of
these expressions of the form 𝜆𝑥1 + (1 − 𝜆)𝑥2, 𝜆 ∈ [0, 1] allow the
minimization of any trade-off between these two objectives. This means
that theoretically, any point on the Pareto front can be found by
repeating the optimization for infinitesimally varying values for 𝜆 an
infinite number of times.

5.3. 𝜀-constraint method

The 𝜀-constraint method is shown in Fig. 10c, and it only considers
a single optimization criterion in the objective function, whereas the
remaining criteria are integrated by means of side constraints. This ap-
proach is frequently applied in the context of reduction targets for CO2
emissions (see, e.g., [224–229]). In these cases, the objective is only
given by the minimization of total costs of the energy system model,
but subject to a side constraint imposing a maximum permissible CO2
emission level (e.g., 95% reduction compared to 1990 as aspired to by
many European countries by 2050) or requiring a minimum amount of
energy from renewable energy sources known as a renewable portfolio
standard (RPS) (see, e.g., [222,230]). This method also yields Pareto-
efficient solutions, which coincide with the ones obtained using the
weighted sum approach (i.e., yielding the same solution on the Pareto
front), but they always differ with respect to the optimal objective
function value due to the different objective function. The 𝜀-constraint
method shown in Fig. 10c constrains the feasible solution space instead
of modifying the objective function gradient, i.e., in the case that x1
represents total system costs and x2 CO2 emissions, the emissions limit
shrinks the feasible space, and the minimum of x1 is found at the
maximum admissible value for x2. As long as CO2 emission reduction
causes additional system costs, the emission constraint is a binding one,
and the corresponding optimal solution is Pareto-efficient.

5.4. Modeling to generate alternatives

Modeling to generate alternatives (MGA) seeks to find maximally
heterogeneous but near-optimal (or near-Pareto-efficient) solutions.
The multitude of different technologies and allocation options of-
ten leads to a plethora of near-optimal alternative system designs,
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motivating this approach. As input data such as capacity-specific costs
and future demand assumptions are uncertain, the analysis of near-
optimal solutions sheds light on aspects such as the cost sensitivities of
alternative designs and flexibility options during the capacity expansion
process. A simple MGA approach is shown in Fig. 10d, for which the
core objectives are removed from the objective function and replaced
by constraints that allow for some degree of sub-optimality, e.g., 5% of
additional costs compared to the cost-optimum given a 95% emission
reduction target. The original objective function can be adapted to
maximize or minimize other system aspects depending on the alter-
native to be generated, e.g., ‘‘maximize wind capacities’’, ‘‘minimize
wind capacities’’, etc. More complex methods strive for a diversification
of technology mixes by limiting the number of technologies used by
means of binary variables and a permutation of available technologies.
For any of these methods, however, a significant deviation from the
Pareto-efficient solutions is avoided by the respective 𝜀-factor.

Among others, the search directions in the solution space can be
defined by the hop-skip-jump (HSJ) algorithm [231], which minimizes
the weighted sum of variables of prior solutions. Others maximize the
distance between new solutions and previous ones using the 𝜀-method
to find near-optimal solutions that are as diverse as possible [232–
234]. Some further unique MGA approaches can be found in the
literature, which combine the usually deterministic MGA technique
with Monte Carlo simulations for key input parameters to take uncer-
tainties into account [235,236]. Furthermore, portfolio constraints can
quantify the benefits of technologies. This approach leaves the objective
function unmodified, and during each iteration, it forcibly excludes
a certain technology from the portfolio or restricts the capital costs
of technologies [237]. Schyska et al. [238] used portfolio constraints
to assess the sensitivity of linear optimization problems on chosen
model parameters. While the 𝜀-constraint usually includes costs, some
articles considered multiple impact categories [239], i.e., they replaced
multiple objectives with constraints in the optimization problem. In
recent studies, MGA has been extended to include spatially distinct
configurations of energy systems [240,241]. Pedersen et al. [242–
244] tried to capture not only numerous but all near-optimal solutions
in the solution space by constructing the feasible polyhedron using
the quickhull algorithm to obtain a convex hull. Grochowicz et al.
[229] extended previous approaches by intersecting the near-optimal
solution spaces of different optimization problems for the same energy
system but with different weather years in order to obtain a solution
space with only weather-robust near-optimal solutions. In addition to
exact methods, metaheuristics that store all solutions until finding an
optimum (e.g., by using particle swarm optimization [245]) were also
used for MGA.

In recent years, MGA has faced a strong uptake in energy system
optimization, as shown in Table 6, because it offers a computationally
efficient method for handling scenario-driven uncertainty in capacity
expansion planning that is easy to implement, reproducible, and can
be solved in a parallelized way.

6. Complexity handling

The preceding sections have shown that many additional model
features can be integrated into frameworks by using mixed-integer
linear formulations. However, given the NP-hardness of this type of
problem, runtime grows exponentially with the number of additional
constraints and variables, which is a major drawback compared to
linear problems, which are, on the other hand, less versatile and not
able to depict all system aspects. For large energy systems, the level of
detail in the model must therefore be tailored to the specific research
focus of the application. This is necessary to keep runtimes within
practicable ranges, from multiple hours to a few days. Besides omitting
certain model features, e.g., linear optimal power flow or piecewise
linear cost functions, several methods exist to systematically decrease
the model size. The most common approaches are spatio-technological
and temporal aggregation, as well as myopic investment planning,

which will be presented in the following.
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Table 6
MGA in the energy system optimization literature.

Authors Year Method

Brill et al. [231] 1982 𝜀-method

DeCarolis [246] 2011 𝜀-method

Trutnevyte et al.
[247]

2012 𝜀-method

Trutnevyte [248] 2013 𝜀-method

DeCarolis et al. [249] 2016 𝜀-method

Trutnevyte [236] 2016 𝜀-method combined with Monte Carlo simulations

Berntsen and
Trutnevyte [234]

2017 𝜀-method based on minimizing and maximizing a
particular attribute

Li and Trutnevyte
[235]

2017 𝜀-method combined with Monte Carlo simulations

Price and Keppo
[232]

2017 𝜀-method with maximized distance between solutions

Yue et al. [250] 2018 Review of MGA based on 𝜀-method

Jing et al. [237] 2019 𝜀-method with portfolio constraints

Nacken et al. [233] 2019 𝜀-method with maximized distance between solutions

Lombardi et al. [240] 2020 𝜀-method with inclusion of spatial dimension

Sasse and Trutnevyte
[251]

2020 𝜀-method

Neumann and Brown
[252]

2021 𝜀-method with search direction based on minimizing
and maximizing a particular attribute

Pedersen et al. [242] 2021 𝜀-method combined with even sampling of the
near-optimal solution space (polyhedron)

Pedersen et al. [243] 2021 𝜀-method combined with even sampling of the
near-optimal solution space (polyhedron)

Schyska et al. [238] 2021 𝜀-method with portfolio constraints

Weber et al. [253] 2021 Review of modeling uncertainties addressed by MGA

Chen et al. [254] 2022 𝜀-method with search direction based on minimizing
and maximizing a particular attribute

Fioriti et al. [245] 2022 Metaheuristics (Particle Swarm Optimization) plus
storing all solutions

Pickering et al. [241] 2022 𝜀-method with inclusion of spatial dimension

Grochowicz et al.
[229]

2023 𝜀-method with intersecting near-optimal solution
spaces of various different problems

Lombardi et al. [255] 2023 𝜀-method with inclusion of spatial dimension

Millinger et al. [256] 2023 𝜀-method with search direction based on minimizing
and maximizing a particular attribute

Neumann and Brown
[257]

2023 𝜀-method with search direction based on minimizing
and maximizing a particular attribute

Pedersen et al. [244] 2023 𝜀-method combined with even sampling of the
near-optimal solution space (polyhedron)

Sasse and Trutnevyte
[239]

2023 𝜀-method with multiple impact constraints

Vågerö and Zeyringer
[258]

2023 Review of MGA as a method to implement justice in
energy system models

6.1. Spatio-technological aggregation

The number of considered spatial regions directly increases the
complexity of a model. As is shown in Section 2.2, the number of
variables and constraints of a model is approximately proportional to
the number of regions assuming weak connectivity (i.e., the number of
transmission lines does not increase disproportionately with the num-
ber of regions). Consequently, reducing the number of regions through
spatio-technological aggregation techniques can effectively decrease
model complexity.

Since reducing the number of model regions typically involves fewer
grid nodes and fewer supply and demand technologies, it can be dis-
tinguished between spatial aggregation (related to grid topology) and
technological aggregation (related to supply and demand technologies).
These concepts are illustrated in Fig. 11.

The extreme case for spatio-technological aggregation is to reduce
the number of spatial regions to a single region. This approach allows
for optimizing the model’s dispatch while ignoring the limitations on
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Fig. 11. Concept of spatial and technological aggregation. Spatial aggregation reduces
the number of system nodes and thus simplifies the network topology, with side effects
on the model’s capability to mimic transmission bottlenecks, whereas technological
aggregation reduces the number of components with a similar function in each region,
which affects the model’s capability to differentiate aspects such as more and less
attractive sites for renewable electricity generation.

interactions between different spatial regions [24,51,259], and it is
typically applied at large spatial scales, such as national or international
levels [260–262]. This simplification is known as the copperplate as-
sumption, as it disregards energy infrastructure and line congestion. In
contrast, for multi-regional models, the copperplate assumption applies
within each region but not between regions.

6.1.1. Spatial aggregation
Spatial aggregation reduces the number of network nodes, thereby

altering the network topology. It can be conducted in a naive way,
e.g., by using administrative [263,264] or square areas defined by
longitude and latitude [265]. Apart from that, clustering techniques
are popular in the modeling community [52], especially with existing
algorithms such as k-means [24,266,267] or max-p [267,268] for defin-
ing the clusters. Clustering aims to maximize similarity within clusters
and differences between clusters, preserving as much information from
the original data set as possible when each cluster is represented by
a single entity, in this case, a region. The clusters can be defined
in terms of attributes such as market price zones [267], electrical
distances [269,270], or capacity factors [270,271].

As pointed out by Cao et al. [272] and Frysztacki et al. [270],
methods using nodal loads or capacities [273], marginal costs and
nodal prices [274], electrical distances [270], or radial equivalent
independent methods [272] have the limitation that they are based on
current systems and thus may not be suitable for capacity expansion
models. Instead, these methods are better suited to simplify dispatch
models applied to existing systems. For capacity expansion models, ap-
proaches based on size-specific parameters such as capacity factor time
series [270,271] are used for clustering because they are independent
of the system layout.

The spatial aggregation of networks requires an interconnected
network topology within each cluster. Depending on the attributes used
for clustering, additional adjacency or connectivity constraints must be
imposed to prevent two disjointed network parts from being assigned
to the same cluster (see, e.g., [268,271]). Specialized algorithms for
network clustering, such as those based on Dijkstra’s shortest path
algorithm [275,276], can also be employed. Table 7 presents a non-
exhaustive review of spatial aggregation techniques applied in the
literature.
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Table 7
Spatial Aggregation in the Literature.

Authors Year Considered Attributes

Duque et al. [268] 2021 An MILP creating p clusters
composed of adjacent candidate
regions while maximizing
intra-cluster homogeneity

Anderski et al.
[277]

2015 Population
Mean wind speed and solar
irradiation
Installed thermal and hydro capacity
Agricultural areas (grasslands, etc.)
Geographic locations of the regions

Hörsch and
Brown [273]

2017 Demand and generation capacities
Geographic locations of the regions

Unternährer et al.
[278]

2017 Integer linear problem forming
clusters for district heating networks
minimizing intra-cluster distance
and subject to minimum and
maximum heating power

Cao et al. [274] 2018 Marginal costs of total power supply

Müller et al.
[279]

2019 Same method as Hörsch and Brown
[273]

Scaramuzzino
et al. [280]

2019 Energy potentials
Economic
Sociodemographic
Geographic locations of the regions

Siala and
Mahfouz [281]

2019 Wind potential or photovoltaic
potential or electricity demand

Biener and
Garcia Rosas
[269]

2020 Electrical distances between regions

Peters et al. [276] 2020 Assignment of generation sites to
extra high voltage nodes using a
Dijkstra algorithm proposed by
Müller et al. [275]

Frysztacki et al.
[266]

2021 Substation distance weighted by
load and average capacity

Frysztacki et al.
[270]

2022 Multiple methods: Clustering of
geographic regions, annual capacity
factors, hourly capacity factor and
the electrical distance

Galván et al.
[263]

2022 Assigning nodes with less electricity
demand to larger adjacent ones or
one node per country

Patil et al. [271] 2022 k-medoids with contiguity
constraints using various
techno-economic parameters for
calculating the dissimilarity between
candidate regions

Bogdanov et al.
[264]

2023 Clustering based on geographic
regions (Japan)

Klemm et al.
[282]

2023 Similar building types or similar
usage types

Phillips et al.
[265]

2023 Geographical averaging using
longitudinal and latitudinal square
areas

6.1.2. Technological aggregation
Technological aggregation typically does not affect the network

topology, and it is therefore not subject to additional connectivity
or adjacency constraints. The simplest approach involves aggregat-
ing all generation sites of a kind into a single site per region (see,

e.g., [68,265,274,281]). More complex approaches use clustering of
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Table 8
Technological aggregation in the literature.

Authors Year Considered Attributes

Welder et al. [68] 2018 Aggregating all the generation sites

Cao et al. [272] 2019 Aggregating all the generation sites

Siala and
Mahfouz [281]

2019 Aggregating all the generation sites

Caglayan et al.
[195]

2021 Clustering based on levelized cost of
electricity (LCOE) of each
generation site

Radu et al. [284] 2021 Running a simplified version of the
ESOM to identify relevant
generation sites

Frysztacki et al.
[266]

2021 Aggregating all the generation sites
within subregion groups

Klemm et al.
[282]

2023 Weight-averaging roof orientations
for PV and solar–thermal use

Phillips et al.
[265]

2023 Averaging of technological time
series within each square region

Pöstges and
Weber [283]

2023 Simultaneous clustering of wind
turbine sites and technologies using
cost and revenue components (yield,
resource-related, technology-specific,
site-specific and grid-related values)

techno-economic site attributes, such as LCOE [195], capacity factor
time series [271], or different site-, technology-, and price-related
values [283]. An overview of these methods is presented in Table 8.

6.1.3. Trade-offs of spatial and technological aggregation
Straightforward geographical approaches often do not differentiate

between spatial and technological clustering. Instead, they divide the
area of interest into several regions and aggregate all generation sites
of a technology type within each region into a single resource (see,
e.g., [264,265]). In contrast, Frysztacki et al. [266] and Patil et al.
[271] have analyzed the trade-off between spatial and technological
aggregation. They both conclude that spatial aggregation underesti-
mates the total annualized system costs by omitting some transmission
bottlenecks, whereas technological aggregation overestimates them by
averaging out the most profitable generation sites with high potential
for capacity expansion. Simultaneous aggregation of nodes and gener-
ation sites can balance these cost effects but cannot fully address the
system layout.

6.2. Temporal aggregation

The number of operational constraints and variables is proportional
to the number of time steps, as shown in Eqs. (1a)–(1r), and typically
exceeds the number of layout variables and constraints, such as ca-
pacities, by orders of magnitude. Most frameworks for energy system
modeling use data from single years with hourly resolution due to
the availability of datasets such as energy demands, prices, and net
capacity factor time series [285]. However, this level of detail often
remains computationally intractable for large-scale models. To address
this issue, the number of time steps is reduced through a process known
as temporal aggregation.

6.2.1. Temporal aggregation approaches
A straightforward method to reduce the temporal resolution is

known as downsampling [285]. This involves merging every 𝑛 time
steps and representing them by their average value. This approach was
applied, for example, by Pfenninger et al. [286], Stenzel et al. [287],
Deane et al. [288], Beck et al. [289], and Yokoyama et al. [290].
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Fig. 12. Combination of typical days and irregular time step lengths adapted from Hoff-
mann et al. [312]. From the first to the second row, the number of inner-daily time
steps is replaced by a smaller number of irregular segments, whereas the time series
is replaced by a subset of typical days from the first to the second column. The
effectiveness of the combination of methods is illustrated in the lower right graph.

Since high temporal resolution is not equally important for all
time periods, using irregular time step lengths is a more effective way
to reduce the temporal complexity of energy system models. Various
methods in the literature address this by clustering [291–295], MILP
optimizations [296], evolutionary algorithms [297], or other heuris-
tics [298,299]. These methods aggregate adjacent time steps using a
similarity measure, such as the difference between the adjacent time
step values, based on the assumption that lower temporal resolution
is sufficient for periods with smaller value gradients or variances. This
technique is known as segmentation.

Another approach is to aggregate days, or sometimes weeks, to
typical or representative days or weeks because most time series, such
as solar capacity factors or demand time series, follow a daily or
weekly cycle. A simple method uses a predefined ordering, e.g., by
representing each month or season by a ‘‘mean day’’ or mean working
days and weekend days. These methods are used in many established
frameworks, including TIMES [73,74,300], THEA [301], LEAP [302],
OSeMOSYS [303], and Syn-E-Sys [304], and are referred to as time
slices.

Similar to the direct reduction of temporal resolution, typical days
or weeks can also be determined irregularly based on the mutual
similarity of periods within the original time series using clustering
algorithms. This relatively new method was applied in the majority of
recent publications addressing temporal aggregation techniques, such
as [293,305–311].

6.2.2. Method combination and implementation
The irregular aggregation of typical periods using clustering algo-

rithms typically results in smaller aggregation-induced errors than an
aggregation solely based on a predefined ordering. This explains the
growing popularity of clustering in recent years [285]. Additionally,
this approach can be freely combined with a reduction in tempo-
ral resolution within the considered periods to further enhance the
effectiveness of the aggregation [312], as illustrated in Fig. 12.

To incorporate a temporal aggregation approach with irregular time
step lengths into a mathematical model or framework, all constraints
involving a time step length 𝛥𝑡 must be adapted to the irregular lengths
of the respective time step. In the model in Section 2.2, this adjustment
affects Eqs. (1l), (1p), (1q), and (1r).

In an aggregation to typical periods, each period in the aggregated
model represents multiple periods in the original model, while the
length of each time step remains unchanged. The number of original
periods represented by a typical period must be weighted with a
corresponding factor for time-dependent and cost-driving variables in
the objective function. Therefore, Eq. (1a) is modified as follows:

min

(

∑

𝑐

∑

𝑟

(

𝑐𝑐𝑎𝑝𝑐,𝑟 𝑥
𝑐𝑎𝑝
𝑐,𝑟 +

∑

𝑝
𝑤𝑝

∑

𝑡
𝑐𝑜𝑝𝑐,𝑟,𝑡𝑥

𝑜𝑝
𝑐,𝑟,𝑡

))

(39)

𝑤𝑝 represents the weighting assigned to the respective period 𝑝, and
𝑡 denotes the aggregated time steps within each period. Consequently,
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the total number of time steps considered in an aggregated model,
involving typical periods, is |𝑝| × |

|

𝑡|
|

. However, the aggregation to
typical periods has a drawback: the temporal order between periods
is lost because each typical period encompasses multiple periods of
the original time series. As a result, a chronology of time steps is
maintained only within each period, particularly affecting Eq. (1m).
This means that the cycle length of the storage operation is generally
restricted to that of the typical periods. Therefore, multiple publications
have aimed to link state variables across periods using additional sets
of auxiliary variables and constraints [77,306,313]. For the sake of
brevity, these approaches are not discussed in detail within the scope
of this study.

6.3. Investment pathway coupling

Decoupling the investment periods along the transformation path-
way is another way to decrease model complexity. The most extreme
simplification is to use a series of uncoupled investment periods, as
depicted in the top row of Fig. 13 [27,314]. While this method enables
parallelization, it lacks a smooth transition between investment periods
because the optimal system design may vary significantly with each
run, rendering it uncommon in the literature.

A more prevalent approach is the myopic foresight method, wherein
the design solution of an investment period serves as the initial system
for the subsequent investment period [27,314]. Consequently, a series
of brownfield analyses is run consecutively. An extension of the myopic
modeling approach is backcasting, where the target system is first
solved and then used to define boundary conditions in the penulti-
mate investment period before reaching the target system [315–317].
This process is repeated recursively until the first investment period
is optimized. While the overall optimization involves one additional
optimization run compared to the forward approach, it is less prone to
delayed and thus disproportionately expensive investment decisions.

The rolling-horizon approach yields a smoother transition in the
energy system but is more complex. In this method, optimization runs
overlap each other [27,314], meaning that a single optimization spans
at least two periods. After one optimization terminates, the design
decisions are fixed for the first investment period covered by the
respective optimization. Investment decisions in subsequent periods
are re-evaluated in the next run, which starts one investment period
later. As a result, this approach allows for less myopic decisions. The
total number of optimization runs equals the number of investment
periods minus the overlap between two consecutive optimization runs,
as illustrated in the fourth and fifth rows of Fig. 13.

Models considering the entire investment horizon at once, depicted
at the bottom of Fig. 13, are called perfect foresight models and are
computationally the most expensive [27,314]. This approach is more
complex than solving multiple smaller energy system models consecu-
tively due to the growth of computational complexity with the model
size, which is at least polynomial for LPs and exponential for MILPs.

Several studies in the literature have examined the impact of fore-
sight modeling on results, as listed in Table 9. While perfect foresight
always results in the most complex model runs, other modeling ap-
proaches are preferred for various reasons. Firstly, myopic foresight
or rolling horizons always lead to investment inefficiencies, resulting
in more expensive and suboptimal solutions. However, these solutions
are often more realistic than perfect foresight solutions and can yield
more robust cost projections or more conservative technological trans-
formations. Secondly, only a subset of reviewed frameworks offers the
option to optimize systems using perfect foresight. The others lack
an investment period index, potentially due to an organic evolution
of the respective program, and are thus limited to iterative, myopic
approaches.



M. Hoffmann et al. Advances in Applied Energy 16 (2024) 100190 
Table 9
Transformation pathway analyses in the literature.

Authors Year Model Region
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Keppo and
Strubegger
[318]

2010 MESSAGE Global ✗ ✗ ✗

Leibowicz
et al. [319]

2013 MARKAL US ✗ ✗

Babrowski
et al. [320]

2014 PERSEUS-NET Germany ✗ ✗

Poncelet et al.
[321]

2016 LUSYM Belgium ✗ ✗

Fuso Nerini
et al. [322]

2017 UK TIMES UK ✗ ✗

Gerbaulet
et al. [323]

2019 dynELMOD Europe ✗ ✗

Löffler et al.
[324]

2019 GENeSYS-MOD Europe ✗ ✗

Thomsen et al.
[325]

2021 DISTRICT district ✗ ✗

Lambert et al.
[326]

2021 N/A Germany ✗ ✗ ✗

6.4. Trade-offs and computational tractability

Spatio-technological and temporal aggregation, along with the type
of model coupling, represent only a subset of techniques to manage
model complexity. As outlined in Section 3, additional component
features can prolong model runtimes, whereas neglecting them can
reduce computational complexity. Notably, high spatial, technological,
or temporal model resolutions often result in disproportionately longer
runtimes compared to the diminishing improvement in model accu-
racy. Hence, some researchers [24,282,327] have conducted sensitivity
analyses by varying the resolution of multiple model aspects. Their
consensus is that the efficacy of different simplification methods likely
depends on the specific model. Moreover, model simplifications should
be employed cautiously, with multiple methods tested to determine
the most favorable balance between speedup and deviation from the
original model. Considering that many current frameworks still lack
adequate flexibility concerning the level of detail (see Martínez-Gordón
et al. [267] in the case of spatial resolution), this observation presents
a challenging demand for future framework development.

6.5. Parallelization

If accuracy losses due to reduced model resolution are unacceptable
and high-performance infrastructure is available, energy system models
can also be solved through parallelization. This is accomplished using
decomposition methods that exploit the block-diagonal structure of the
model, as illustrated in the two left-hand graphs in Fig. 14.

The block structure can be achieved by sorting the variables and
constraints by one of the model dimensions, such as time steps or region
indices. This approach leverages the sparsity of most model matrices, as
most operational variables for a particular time step, region, scenario,
commodity, and component only appear in the constraints associated
with that specific time step, region, scenario, commodity, and com-
ponent [328]. Depending on the dimension along which the model is
decomposed, this method is referred to as decomposition with respect
20 
Fig. 13. Different foresight approaches for investment horizons adapted from [27,314].
With every row, the coupling between consecutive investment periods and likewise the
computational complexity (Comp.) increase, whereas a parallelized solution for different
target years (Para.) is not possible except for the first naive approach. E describes the
total number of considered investment periods, and 𝛺 describes the overlap of periods
from one run to the next for the rolling horizon approach.

to time, space, or other dimensions [27,328]. The most commonly
applied decomposition methods are listed in Table 10.

Typically, certain variables and constraints span multiple indices
within the chosen dimension, known as complicating variables or con-
straints [328,329]. For instance, the capacity variable of a component
appears in the capacity constraint (1l) of every time step, whereas the
storage constraint in Eq. (1h) connects adjacent time steps. In temporal
decomposition, capacity variables are therefore complicating variables,
and storage constraints are complicating constraints.

With proper sorting, coupled systems can be restructured to solely
include either complicating constraints at the top of the block-diagonal
matrix in Fig. 14a or complicating variables on the left side of the
block-diagonal matrix in Fig. 14b. For example, complicating variables
can be converted into complicating constraints by defining a variable
for each index and ensuring their equality through an additional set of
constraints.

The mathematical solution algorithm depends on the shape of the
matrix. For matrices with complicating constraints, the Dantzig–Wolfe
decomposition is used. For matrices with complicating variables, Ben-
ders or Lagrangian decomposition are used. There are many addi-
tional algorithms, such as those solving models with both complicating
variables and constraints in a nested approach or by reformulation
using Karush–Kuhn–Tucker conditions and a parallel interior point
algorithm [330]. However, Dantzig–Wolfe, Benders, and Lagrangian
decomposition are the most commonly used, as shown in Table 10.

All three algorithms are iterative, as illustrated in Figs. 14c and
14d. In each iteration, a master problem defines cost coefficients for
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Fig. 14. (a): block-diagonal matrix with complicating constraints for Dantzig–Wolfe
or Lagrangian decomposition; (b): block-diagonal matrix with complicating variables
for Benders decomposition; (c): process of solving a decomposed model by iteratively
solving the master problem and the sub-problems; (d): upper and lower bounds to the
original model that are obtained in every iteration and successively approach each
other until convergence is reached.

the sub-problems. The sub-problems consist of the problems of the
diagonal blocks with modified objective functions. After solving the
sub-problems in parallel, the solutions can either be infeasible (due
to varying values for the same complicating variables in Benders de-
composition or violated complicating constraints in Dantzig–Wolfe and
Lagrangian decomposition), feasible and suboptimal, or optimal. De-
pending on the case, the master problem is adjusted until an optimality
criterion is met. In each iteration, Benders and Dantzig–Wolfe decom-
position provide both an upper and a lower bound to the original
optimal objective function value, enabling early termination if a cer-
tain optimality gap is undercut. Lagrangian decomposition, however,
provides only a lower bound.

7. Limitations of optimization frameworks

While we have shown that optimization-based frameworks for en-
ergy system modeling cover a wide set of applications, scales, and
scopes, the modeling approach still has limitations with respect to
certain aspects observed in real energy systems. In the following,
we will divide out non-exhaustive discussion into technical, financial,
environmental, and social aspects in the Sections 7.1, 7.2, 7.3, and 7.4,
respectively.

7.1. Technical aspects

In general, technical aspects are well-addressed by optimization
frameworks. Still, optimization never replaced simulation approaches
in technical modeling, given the existence of popular hybrid or
simulation-based energy system frameworks such as HOMER [365].
First, optimization models suffer from an exponential increase in com-
putational complexity with model size, which naturally imposes limits
on real-time applications or those with an extremely high level of
detail, such as models with sub-hourly resolution [366]. Simulation, in
contrast, is able to quickly and accurately compare the performance
of alternative designs with options for sensitivity analyses but usu-
ally requires more or less predefined candidate systems to test their
performance [367].

The perfect foresight paradigm of optimization frameworks can lead
to additional drawbacks. On the one hand, real systems face uncer-
tain future demand, whereas optimization frameworks have perfect
information on the operational time horizon. Thus, the operational
optimization of real systems relies on physical or non-physical foresight
models and model-predictive control [368], and simulation models
can be heuristically trained to capture real system behavior more
accurately [369]. Lastly, despite the superiority of optimization-based
operations over rule-based ones in systems such as microgrids, rule-
based energy management systems are still the more widely used
technology [370] due to their simplicity and lower data requirements.
Optimization frameworks likewise fail to consider these historically
developed, rule-based system limitations.
21 
Decomposition in the Literature.
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Virmani et al.
[331]

1989 ✗ technology

Martínez-Crespo
et al. [332]

2007 ✗ time

Roh et al. [333] 2007 ✗ ✗ time

Khodaei et al.
[334]

2010 ✗ time

Flores-Quiroz
et al. [335]

2016 ✗ time

Wang et al. [336] 2016 ✗ ✗ space

Aghaei et al.
[337]

2020 ✗ time

Long et al. [338] 2020 ✗ technology

Mahroo-Bakhtiari
et al. [339]

2020 ✗ space

Wakui et al. [340] 2020 ✗ space

Wei et al. [341] 2020 ✗ space

Asl et al. [342] 2021 ✗ space

Hu et al. [343] 2021 ✗ space

Kou et al. [344] 2021 ✗ time

Moradi-Sepahvand
and Amraee [345]

2021 ✗ space

Shahbazi et al.
[346]

2021 ✗ time

Wang et al. [347] 2021 ✗ time

Bakhtiari et al.
[348]

2022 ✗ space

Gan et al. [349] 2022 ✗ time

Gan et al. [349] 2022 ✗ space

Haghighi et al.
[350]

2022 ✗ space

Javadi et al.
[351]

2022 ✗ time

Li et al. [352] 2022 ✗ time

Li et al. [353] 2022 ✗ space

Mehrtash et al.
[354]

2022 ✗ scenario

Middelhauve
et al. [355]

2022 ✗ space

Rehfeldt et al.
[330]

2022 ✗ time

Wu et al. [356] 2023 ✗ space

Zhang et al. [357] 2022 ✗ time

Zhao et al. [358] 2022 ✗ technology

Constante-Flores
et al. [359]

2023 ✗ time

Du et al. [360] 2023 ✗ time

Paterakis [361] 2023 ✗ time

(continued on next page)
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Table 10 (continued).
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dos Santos et al.
[362]

2023 ✗ time

Wirtz et al. [363] 2023 ✗ space

Zhao et al. [364] 2023 ✗ space

7.2. Financial aspects

The modeling of financial aspects has experienced a remarkable
upswing over the last two decades, from pure investment decision
support over cost minimization to dispatch optimization and the pre-
diction of market-clearing prices. However, numerous aspects present
in current energy markets are still not considered in modeling frame-
works. According to different authors [17,197], the neglect of multiple
stakeholders and trading options between them are among the most
obvious. In the following, and without the claim of comprehensiveness,
we provide a brief insight into two well-studied approaches to account
for multiple stakeholders in energy systems, agent-based modeling and
bi-level programming, which have not yet been integrated into the
reviewed optimization frameworks.

7.2.1. Agent-based modeling
Agent-based models (ABMs) consist of autonomous decision-making

entities [371] and are one option to account for the different stake-
holder roles within modern energy systems, among which are energy
consumers, providers and suppliers, distribution systems, transmission
grid operators, and regulators [45]. Agent-based models are generally
embedded into soft-coupled frameworks with interacting sub-problems,
which can be based on both optimization and simulation. For exam-
ple, Scheller et al. [372] present an agent-based model composed of
a decision model for commercial actors, a bottom-up energy system
optimization, and a sub-model to account for market principles to
model municipal energy systems. Similar two-layer architectures con-
sisting of energy system optimizations at the upper level and retail
market models at the lower level have repeatedly been proposed in the
literature (see, e.g., [373–375]).

7.2.2. Bi-level programming
Bi-level programming offers a way to integrate multiple agents

into models with a single hard-coupled optimization, which uses the
optimization problem of one or multiple agents as side constraints for
another one. The nested optimization problem can then be transformed
into an MILP using Karush–Kuhn–Tucker (KKT) conditions [376,377]
for optimality of the sub-problem and an integer–linear formulation
of complementary slackness conditions according to Fortuny-Amat and
McCarl [378]. For example, this approach can be used to model the
interaction between the price-setters of energy commodities and price-
takers searching for the cheapest alternative, also referred to as Stack-
elberg pricing games [379].

Table 11 reveals that bi-level optimization has been applied to
various energy sectors and scopes, often with investment decisions at
the upper and market-clearing conditions at the lower levels. The most
frequently employed approach is above-mentioned reformulation by
Karush–Kuhn–Tucker conditions to so-called mathematical programs
with equilibrium constraints (MPECs) [380–384]. However, due to the
massive computational complexity of these models, some authors have
avoided direct reformulation and relied on heuristic solvers such as
teaching–learning-based optimizations (TLBOs) [385], non-dominated
sorted genetic algorithms (NSGAs) [386,387], or a discretization of the
 n
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Table 11
Bi-level optimization in the literature.

Authors Year Upper Level Lower Level Method

Jenabi et al. [380] 2013 Investment in
transmission by
transmission grid
operation

Market clearing KKT (MPEC)

Feijoo and Das [381] 2015 Microgrid operation Linear electricity
dispatch

MPEC

Liu and Li [386] 2015 Electric dispatch Load-control NSGA

Valinejad and
Barforoushi [382]

2015 Installments of new
generation units

Market clearing MPEC

Hu et al. [385] 2016 Fuel-cost and emission Interval
reduction for
wind output

TLBO

Ju et al. [389] 2016 Maximize income of
virtual power plant

Minimize
operation cost of
the day-ahead
schedule

Models serially
solved once

Škugor and Deur
[387]

2016 Fleet-charging
management

dynamic
programming

NSGA

Li et al. [383] 2017 Electricity dispatch with
wind and coal

Natural gas
model

MPEC

Li et al. [384] 2019 Electricity and heating
market

Market clearing
and contracting

MPEC

Hoffmann et al.
[388]

2023 District energy supplier Residential
prosumers

Discrete price
constellations

model instead [388]. Apart from that, the simultaneous consideration
of multiple lower-level problems as performed by Hoffmann et al. [388]
has remained an exception due to computational limitations.

Noteworthy, none of the reviewed frameworks in Table 12 incor-
porate KKT conditions given their significant mathematical complexity.
Therefore, the reviewed literature in Table 11 used own models instead
of frameworks, except for Hoffmann et al. [388] who discretized a
bi-level program using multiple model instances of the ETHOS.FINE
framework [69]. However, given the ongoing advancements of MILP
solvers and the ubiquitous trend towards decentralized energy system
models with many different providers and prosumers, future frame-
works should strive to depict the different and, at times, conflicting
objectives of different stakeholders.

7.3. Environmental aspects

In recent years, frameworks for energy system modeling have in-
creasingly been used to account for ecological aspects such as CO2-
missions [390], recycling [391], and life-cycle assessment [392,393].
mong others, the approaches involved modeling CO2 and other mate-
ial flows as commodities or integrating end-of-life emissions into the
ptimization.

However, energy systems interact with the environment on many
ore levels than by means of primary energy consumption, carbon

missions, and product life cycles alone. Renewable energy systems
ave a direct impact on land occupation [36] and the scenicness of
he environment [189,394–396] with eventual second-order effects on
ssets such as real estate prices that are hard to quantify. Furthermore,
arge-scale capacity expansion of renewables such as wind turbines can
ause feedback effects on micro-climates such as wake effects [192],
hereby decreasing the anticipated profitability of planned large-scale
ind parks.

Lastly, energy generation, whether fossil or renewable, can have
irect and indirect impacts on biodiversity. Direct impacts can be
bserved, for instance, in the case of flooding due to hydroelectricity
rojects [397], whereas indirect effects involve increased mining activ-
ties [398] to secure the resource supply for new technologies. These
ocal effects are difficult to quantify financially, which is why their
nclusion in frameworks for energy system modeling has been widely

eglected to date.
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7.4. Social aspects

Social aspects such as fairness, social acceptance, behavioral adap-
tation, and political uncertainty are currently not sufficiently addressed
by optimization-based modeling frameworks.

The transition of the energy sector has fundamental impacts on
generation, distribution, and consumption concepts, and thereby price
levels and volatility. Affordability and the empowerment of all social
classes to participate in this transformation process are thus crucial
to achieving both acceptance [399,400] and climate neutrality. This
includes avoiding additional burdens on the poor [400], as quantified
by the Gini-coefficient [401,402], and disproportionate benefits for
some from feed-in tariffs [403], as can be quantified by Jain’s fairness
index [404].

Social acceptance is crucial to avoid a ‘‘not in my backyard’’
(NIMBY) mindset and local opposition [36,396,405]. For that, partici-
pation schemes and indirect benefits such as job creation [36] can be
appropriate measures if efficiently offered and communicated.

Another aspect currently not covered in frameworks for energy
system optimization are behavioral aspects that go beyond plain de-
mand response modeling. Behavioral patterns are crucial for many
aspects, such as residential electricity consumption [406,407] and mo-
bility [408,409], which are partially non-financially motivated as well
as stakeholder-dependent. Hence, they constitute another challenging
modeling task to be considered endogenously in optimization models.

Apart from that, legal regulations and subsidization schemes have
occasionally been considered in energy system models, e.g., for public
or residential buildings [171,199,206,207,410]. However, given the
internationally diverse laws and regulations, standardized frameworks
offer limited options for modeling legal constraints and opportunities
beyond simple emission constraints or remuneration schemes, such
as CAPEX subsidies or feed-in tariffs. Finally, geopolitical uncertain-
ties such as the Russo–Ukrainian conflict are difficult to model but
have inevitable implications on middle- and long-term energy supply
pathways [411].

7.5. AI and risk of substitution

Lastly, the omnipresent ascent of artificial intelligence (AI) will
likely also challenge computationally expensive bottom-up energy sys-
tem modeling in general and frameworks in particular [412–415].
However, models based on machine learning, deep learning, and gen-
erative AI, including various forms of neural networks, are black-box
models, which could make the identification of key drivers for a
cost-efficient energy transition more opaque. Interestingly, a counter-
approach using surrogate models can also be found in the literature.
Surrogate models approximate complex black-box models with simpler
white-box ones [416–419], often using data-driven approaches and
a subset of data points derived from simulations. Given the contin-
uously increasing complexity of energy systems, they may become
an attractive alternative if abundant computational capacities are not
available. In the future, energy system modelers will more than ever
be confronted with the question of how much complexity is needed to
find an answer to their problem at hand and what share of the solution
process they need to understand or be able to reproduce results.

8. Discussion

Our review has shown that the underlying concept of optimization-
based bottom-up frameworks for energy system modeling has stayed
constant throughout the last 50 years. The vast majority of models and
frameworks rely on the following aspects:

1. Linear or mixed-integer linear programming
2. A component logic
3. Energy balances (the first law of thermodynamics)
23 
Fig. 15. Initial and current capabilities of bottom-up energy system optimization
models. The blue dashed line encloses the nucleus optimization-based bottom-up of
energy system models, whereas the red line encircles all features that are covered by
many current models. The white terms reflect the features discussed in this work.

4. Cost minimization or profit maximization
5. A central-planner perspective

Against the backdrop of the number of bottom-up modeling frame-
works that have grown from 25 between 1970 and 2014 to 63 in 2024,
this implies two things: On the one hand, the underlying rationale of
cost minimization while guaranteeing energy supply persists as the core
task of energy system models. On the other hand, open-source frame-
work development incorporates a significant share of redundancy. Like-
wise, the basic logic of reviews of bottom-up energy system models
has remained unchanged. Most of them use a categorization of models
and frameworks, or model features and system aspects. Hence, most
reviews are status updates on current modeling trends but do not equip
modelers with the knowledge to set up their own basic models. Our
meta review addresses this issue and systematically introduces all basic
as well as various extended model features and explains the respective
mathematical formulations, sketching a picture of what is currently
possible and how further system aspects could be incorporated or
improved in future research.

In this context, our study demonstrates that many model extensions
designed to capture economic, technological, or physical phenomena—
such as economies of scale, technological learning, minimum up-
or down-times, AC power flow, or energy flows in heat networks—
introduce non-linearities. These non-linearities are frequently approxi-
mated using mixed-integer linear programming. The increased level of
detail, however, comes at the cost of significantly higher computational
complexity, often restricting model execution to high-performance
computing environments, thereby limiting accessibility to a smaller
number of research institutions. To address this challenge, our re-
view presents methods for managing complexity through aggregation,
decoupling, or parallelization. Aggregation reduces complexity by sim-
plifying less critical parts of the model, for example, by merging
non-critical time steps, regions, or technologies within the options
portfolio. Decoupling, on the other hand, separates model components
to solve them sequentially. Unlike these heuristic approaches, paral-
lelization via decomposition is an exact method that allows models to
be solved on distributed smaller resources, though it does not reduce
the total cumulative runtime. These findings underscore that the trade-
off between model detail and computational complexity remains a
critical consideration.

Fig. 15 depicts the traditional core features of bottom-up energy sys-
tem models with a blue line and the capabilities of many current models
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and frameworks with a red line. Starting from a mainly technical
focus, recent models increasingly cover other system aspects, such as
economic, socio-political, and environmental ones. We have addressed
most of the model features listed in Fig. 15 by either presenting the
mathematical formulations currently covered by energy system models
(within the red dashed line) or by critically discussing the features not
yet addressed by them.

With respect to economic aspects, frameworks for energy system
modeling are currently not only capable of considering costs as a
static attribute of components but can also capture complex laws of
economics, such as economies of scale, technological learning, and de-
mand elasticity. A remaining weakness of models with respect to these
aspects is their prevalent central planner perspective, which usually
underestimates the costs of multi-agent equilibria with deviating selfish
behavior by stakeholders. The socio-political dimension has become
part of many models, as regulatory schemes and flexibility options
have become an important aspect of current systems with intermittent
feed-in from renewables. However, non-financial aspects in particular
of the societal interaction with energy systems, such as the impact
of behavioral changes, also by means of education, and the aspect
of fairness of energy affordability and distribution, have remained a
widely neglected field for modern energy system modeling frameworks.
Finally, the environmental aspects of energy systems have become a
center of attention due to emissions and resource consumption, and
they are currently already considered by the vast majority of models.
In contrast, the non-technical aspects of the systems’ interaction with
the environment, among which are long-term climate uncertainty, the
visual impact of modern energy sources on the landscape (scenicness),
and the impact on biodiversity and wildlife habitats, are neglected by
contemporal frameworks.

Overall, the fact that all the aspects named in this work have
been studied in the literature but only a subset of them have been
integrated into bottom-up energy modeling frameworks illustrates that
mixed-integer linear programming and a modular framework logic
impose limits on model adaptability and versatility. Given the steady
evolution of bottom-up energy system models and the growing com-
plexity of energy procurement, conversion, and consumption in the
setting of a growing global population, destabilized climate conditions,
intensifying resource scarcity, and a society that vacillates between
unconditional support and counter-factual resentment, future modeling
frameworks should become multi-objective, multi-agent, and partially
non-financial.

9. Conclusions

Our study provides a comprehensive review of optimization-based
energy system modeling frameworks, with a focus on their mathe-
matical structures, particularly mixed-integer linear formulations. By
analyzing 63 different frameworks and conducting a meta-review of
68 existing literature reviews, our study offers a dual perspective
that bridges the gap between practical application and theoretical
formulation in energy system optimization.

One of the primary outcomes of our work is that the basic concept
of network-based energy flow optimization has remained consistent
since the 1970s, despite the rapid propagation of new frameworks,
particularly over the last decade. The significant growth in open-source
frameworks, particularly in Europe, reflects the increasing demand for
flexible, transparent, and easily customizable tools for energy system
modeling. However, this growth also highlights potential challenges
related to redundancy and fragmentation in the field, raising the need
for improved documentation and collaboration among developers.

Despite the technological advancements in modeling tools, the
underlying mathematical approaches have largely remained consis-
tent, relying heavily on mixed-integer linear programming. This con-
sistency underscores the importance of understanding these mathe-
matical foundations, particularly for researchers and developers who
seek to build or extend frameworks for specific applications. Thereby,

ensuring the solvability of large-scale energy system models using

24 
complexity-handling techniques, such as temporal aggregation, spatio-
technological aggregation, and parallelization, remains a critical cor-
nerstone in the advancement of modeling techniques.

In addition to providing a detailed review, our study contributes to
the field by offering a standardized set of mathematical formulations
that can serve as a foundational reference for energy system modelers.
These formulations aim to facilitate the development of new frame-
works and enhance the transparency and comprehensibility of existing
ones.

In summary, our study not only synthesizes the state of the art in
energy system modeling frameworks but also provides practical tools
and insights for advancing the field. By focusing on the mathematical
underpinnings of these frameworks, we bridge a critical gap in the lit-
erature and offer valuable contributions for both academic researchers
and practitioners engaged in the energy transition.
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Table 12
Energy system optimization frameworks according to ‘Open Energy Platform’ [2] and ‘Open Energy Modelling Initiative’ [3].

Acronym Year Country Full Name Mentioned in Review Scope Type Language Translator Solver

AnyMOD [420] 2020 Germany None None Large-scale multiple
periods GEP for North
America

GEP Julia JuMP Gurobi

aristopy [421,422] 2021 Germany None None Flexible scale and
flexible periods

GEP Python Pyomo Multiple

Backbone [82] 2019 Finland None [58] Flexible scale flexible
periods

Both GAMS GAMS Multiple

Balmorel [423] 2001 Denmark None [1,13,15,18,21,25,29,
30,40,44,45,47,50,51,
53,54,56,58,60,424–
426]

Large-scale flexible
periods UC for multiple
regions

Both GAMS GAMS CPLEX

BESOM [427] 1974 USA Brookhaven Energy
System Optimization
Model

[10,27,33,47,50] Small-scale single period
for US

Both N/A N/A N/A

Breakthrough Energy
Model [428,429]

2020 USA None None Large-scale multiple
periods production costs
model for US

Dispatch/ UC Julia JuMP Gurobi

Calliope [81] 2013 Great Britain None [1,27,30,44,47,49,51,
53,60]

Flexible scale multiple
periods UC for Europe
and UK

Dispatch/ UC Python Pyomo Gurobi

CapacityExpansion
[430]

2020 USA None None Flexible scale multiple
periods GEP for
California and Germany

GEP Julia JuMP Gurobi

CAPOW [431,432] 2020 USA California and West
Coast Power System
model

None Small-scale single year
market operation for
California

Dispatch/ UC Python Pyomo CPLEX

CLOVER [433] 2023 Great Britain Continuous Lifetime
Optimisation of
Variable Electricity
Resources

None Flexible scale flexible
periods GEP for multiple
regions

GEP Python Python None

DER-CAM [434] 2004 USA Distributed Energy
Resources Customer
Adoption Model

[1,12,14,25,31,35,36,
39,40,42,45,47,51,56,
60,435]

Small-scale single periods
UC for global microgrids

Dispatch/ UC GAMS GAMS Multiple

DESOD [436] 2016 Italy Distributed Energy
System Optimal
Design

[27] Small-scale flexible
periods GEP for
residential and
commercial districts

GEP C# C# Multiple

DIETER [437] 2014 Germany Dispatch and
Investment
Evaluation Tool with
Endogenous
Renewables

[1,18,25,29,30,44,47,
51,56,59,60,163,438,
439]

Large-scale single year
GEP for Europe

GEP Python GAMS CPLEX

Dispa-SET [440–442] 2015 Belgium None [25,29,30,51,60] Flexible scale single year
UC for Europe

Dispatch/ UC Python GAMS CPLEX

EFOM [443] 1982 Belgium Energy Flow
Optimization Model

[10,13,20,27,28,32,
33,58]

eGo [444] 2017 Germany Electricity grid
optimization

None Small-scale single year
UC for Germany

Dispatch/ UC Python Pyomo Gurobi

ELMOD [445] 2005 Germany Electricity Model [18,20,25,51,58,446–
448]

Large-scale multiple
periods UC for Europe

Dispatch/ UC Python GAMS CPLEX

EMMA [449] 2013 Germany The European
Electricity Market
Model

[1,25,30,44,47,51,59,
60,450,451]

Large-scale single-year
GEP

GEP GAMS GAMS CPLEX

EnergyPLAN
[452–454]

1999 Denmark None [1,12–14,21,25,28,29,
31,35,37,39–45,47,
49–56,58–60,435]

Mid-scale single year
power simulation

Dispatch/ UC Delphi,
Pascal

Delphi,
Pascal

Multiple

EnergyRt [455] 2022 Russia Energy systems
modeling toolbox in
R

[51,60] Large-scale multiple
periods GEP for US

GEP R Multiple Multiple

EnergyScope [456] 2014 Switzerland None [58,60] Small-scale single year
UC for Belgium

Dispatch/ UC AMPL AMPL CPLEX

ESO-X [89] 2017 Great Britain Electricity Systems
Optimisation

None Small-scale multiple
periods GEP for Great
Britain

GEP Excel GAMS CPLEX

ESONE [457] 2020 Great Britain None Mid-scale multiple
periods

Both GAMS GAMS CPLEX

ETHOS.FINE [68,69] 2016 Germany Framework for
Integrated Energy
System Assessment

[27,54] Flexible scale flexible
periods UC

Both Python Pyomo Multiple

EU_REGEN [458] 2019 Germany EU Regional
Economy,
Greenhouse Gas and
Energy

None Large-scale single year
UC for Europe

Dispatch/ UC GAMS GAMS CPLEX

ficus [459] 2017 Germany VICUS for factories [30,44,47,51,53,58] Small-scale flexible
periods GEP and UC for
factories

GEP, Dispatch/
UC

Python Pyomo Multiple

(continued on next page)
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Table 12 (continued).
Acronym Year Country Full Name Mentioned in Review Scope Type Language Translator Solver

FOCUS 2023 Germany Framework for
Optimizing
sector-Coupled Urban
energy Systems

[18] Residential to city-scale
GEP

GEP Python Pyomo Multiple

FlexiGIS [460] 2018 Germany Flexibilisation in
Geographic
Information Systems

None Small-scale single year
UC for cities

Dispatch/ UC Python Oemof CBC

GBOML [461] 2022 Belgium Graph-Based
Optimization
Modeling Language

None Flexible scale single year
GEP

GEP Python Python Multiple

GENeSYS-MOD
[462,463]

2017 Germany Global Energy
System Model

[18,29,30,53,60,424–
426]

Flexible scale single year
UC

Dispatch/ UC Excel, GAMS GAMS CPLEX

GenX [464] 2017 USA None None Flexible scale single year
UC

Both Julia JuMP CPLEX,
Gurobi

GridCal [465] 2016 Spain Grid Calculator [60] Flexible scale flexible
periods UC

Dispatch/ UC Python None Multiple

GRIMSEL-FLEX
[466–470]

2019 Switzerland General Integrated
Modeling
environment for the
Supply of Electricity
and Low-temperature
heat

None Small-scale single year
UC for Switzerland

Dispatch/ UC Python Pyomo CPLEX

highRES [230,471] 2018 Great Britain The high spatial and
temporal Resolution
Electricity System

None Large-scale flexible
periods

Both Python GAMS CPLEX

IKARUS [472,473] 1994 Germany Instrumente für
Klimagas-
Reduktionsstrategien

[14,15,27,47,50,52,
55,59]

Mid-scale multiple
periods

Both Delphi,
Pascal

Delphi,
Pascal

Multiple

LEAP [474] 1980 Sweden Long-range Energy
Alternatives Planning

[1,20,27,28,34,37,41,
44,47,50,52,55–59]

Flexible scale large
periods GEP

GEP GUI GUI Multiple

Lemlab [475] 2021 Germany Local energy market
laboratory

None Small-scale real-time UC Dispatch/ UC Python Pyomo Multiple

MARKAL [476] 1978 USA Market and
Allocation

[14,17,20,21,27–
29,34,36,37,42,44,47,
49,50,52,53,55,57–
59,61,425]

Flexible scale large
periods

Both GAMS GAMS Multiple

MATPOWER [477] 1997 USA None None Flexible scale flexible
periods UC

Dispatch/ UC Matlab Matlab Multiple

Medea [478] 2019 Austria None None Large-scale single year
UC for Germany and
Austria

Dispatch/ UC Python GAMS CPLEX,
Gurobi

MESSAGEix
[479,480]

1981 Austria Model for Energy
Supply Strategy
Alternatives and
their General
Environmental
Impact

[29,60] Large-scale flexible
periods UC

Both Python GAMS Multiple

MicroGridsPy
[481–484]

2016 Belgium None Small-scale flexible
periods

Both Python Pyomo Multiple

NEMO (SEI)
[485,486]

2018 Nemo Next Energy
Modeling system for
Optimization

[1,30,44,47] Flexible scale flexible
periods

Both Julia Julia Multiple

oemof-solph [80] 2017 Germany Open Energy
Modeling Framework

[29,30,426] Flexible scale flexible
periods

Both Python Pyomo Multiple

OMEGAlpes
[487–489]

2018 France Generation of
Optimization Models
As Linear
Programming for
Energy Systems

[58] Small-scale single year
UC for districts

Dispatch/ UC Python PuLP Multiple

OpenTEPES [490] 2021 Spain Open Generation,
Storage, and
Transmission
Operation and
Expansion Planning
Model with RES and
ESS

None Large-scale multiple
peridos GEP for Europe

GEP Python Pyomo Gurobi

OSeMOSYS [70] 2008 Sweden Open Source Energy
Modeling System

[1,15,17,28–30,44,47,
49,50,52–54,56–60]

Large-scale large periods
GEP

GEP Python,
GNU
MathProg

Pyomo, GNU
MathProg

Multiple

Pandapower [491] 2016 Germany None [18,30,44,289] Small-scale multiple
periods UC

Dispatch/ UC Python Python PyPOWER

PERSEUS [492] 2008 Germany Program-package for
Emission Reduction
Strategies in Energy

[18,29,47,59,306,
446–448]

Mid-scale large periods
UC

Both GAMS GAMS Multiple

POMATO [493–496] 2019 Germany POwer MArket TOol None Large-scale single year
UC

Dispatch/ UC Python,
Julia

JuMP CLP

PowerSimulations.jl
[497,498]

2017 USA None None Large-scale flexible
periods UC

Dispatch/ UC Julia JuMP Multiple

PowNet [499] 2019 Singapore None None Large-scale single year
UC for south-east Asia

Dispatch/ UC Python Pyomo CPLEX,
Gurobi

(continued on next page)
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Table 12 (continued).
Acronym Year Country Full Name Mentioned in Review Scope Type Language Translator Solver

PyPSA [182] 2015 Germany Python for Power
System Analysis

[1,15,27,28,30,44,53,
59,60,446,448]

Flexible scale flexible
periods UC for multiple
regions

Both Python Python Multiple

REMIND [390,500] 2006 Germany REgional Model of
INvestments and
Development

[1,28,44,47,50,60] Large-scale multiple
periods GEP

GEP GAMS GAMS Multiple

REMix [71] 2012 Germany Renewable Energy
Mix for sustainable
electricity supply

[18,47,52,53,163,438,
439]

Large-scale flexible
periods UC

Both Python GAMS Multiple

ReEDS [501] 2007 USA Renewable Energy
integration and
OPTimization
platform

[1,60] Large-scale flexible
periods UC and GEP for
north America

Dispatch/ UC
and GEP

Python, R GAMS CPLEX

REopt [502,503] 2014 USA Renewable Energy
integration and
OPTimization
platform

None Small-scale flexible
periods UC

Dispatch/ UC Python,
Julia

JuMP Multiple

SecMOD [392] 2020 Germany None None Flexible scale flexible
periods incorporating
LCA

GEP Python Pyomo CPLEX,
Gurobi

SpineOpt [504] 2017 Belgium None None Flexible scale flexible
periods

Both Julia JuMP Multiple

Switch [30,505–515] 2012 USA Solar, Wind,
conventional and
Hydroelectric
generation, and
transmission

None Large-scale flexible
periods UC for multiple
regions

Dispatch/ UC Python Pyomo Multiple

Temoa [516] 2010 USA Tools for Energy
Model Optimization
and Analysis

[1,17,29,44,47,50,53,
58]

Large-scale flexible
periods GEP for multiple
regions

GEP Python Pyomo Multiple

TIMES [4,5,72–74] 1998 International The Integrated
MARKAL-EFOM
System

[1,15,17,20,27–
29,42,44,47,49,50,52,
53,55,58–60,446]

Flexible scale flexible
periods

Both GAMS GAMS Multiple

URBS [517–521] 2003 Germany None [1,18,27,30,44,47,56,
58,59,424–426]

Flexible scale flexible
periods

Both Python Pyomo Multiple
Table 13
Categorization of MODEX-based reviews.

Reference Tools
reviewed

Scope: Details Focus Type of models Frame-works
incl.

Description

Models Methodology

Approach #5: MODEX model comparison
a. Scope: Geographically specific

Raventós et al. [446],
2022

8 Municipal ✓ ✓ BU, opt ✓ Workflows for disaggregation of time series in ESMs

Beck et al. [522], 2021 4 Germany ✓ ✓ opt, sim ✓ Use of power grid-focused scenarios for the comparison of optimization models
van Ouwerkerk et al.
[424], 2022

5 Germany ✓ ✓ BU ✓ CO2 emission budgets applied to 2030 base scenario

Candas et al. [425],
2022

5 Germany ✗ ✓ opt ✓ Mathematical implementations with results for 2050 CO2 budget

Hobbie et al. [447],
2022

8 Europe ✓ ✓ sim, opt ✓ Congestion management in high-voltage grids

Syranidou et al. [448],
2022

8 Europe ✓ ✓ TD, BU, opt, sim ✓ Quantitative and qualitative comparison for grid and power systems

van Ouwerkerk et al.
[438], 2022

6 Europe ✓ ✗ opt ✓ Differentiation in capacity expansion scenarios

Gils et al. [163], 2022 9 Europe ✓ ✓ opt ✓ Technology representation, optimization approaches, and sector coupling
Gnann et al. [523], 2022 3 Germany ✓ ✗ opt, sim ✗ Market diffusion of alternative fuels in passenger cars
Misconel et al. [62],
2022

3 Germany ✓ ✗ opt, sim ✗ Mathematical approaches, myopic foresight perspective, and level of detail

Ruhnau et al. [450],
2022

5 Europe ✓ ✗ opt ✓ Electricity market models for carbon pricing scenarios

b. Scope: Not specified/sector-specific

Bucksteeg et al. [451],
2022

5 Combined heat & power ✓ ✓ opt ✓ Decarbonization through power-to-heat scenarios

Gils et al. [439], 2022 8 n.a. ✓ ✗ opt ✓ Model-related deviations with sector-coupling for 16 test cases
Berendes et al. [426],
2022 (?)

5 n.a. ✗ ✓ opt ✓ Employment of user survey for the usability testing of ESM frameworks
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