
CONTINUOUS INTEGRATION
Hello World
RSE Summer School, September 25, 2024 Jakob Fritz, Maria Lupe Barrios Sazo, Dirk Brömmel, Robert
Speck Jülich Supercomputing Center, Forschungszentrum Jülich

Member of the Helmholtz Association

Overview
Structure of the day

Laying the foundations

Give examples using GitLab and/or GitHub

COFFEE Break

Test and code quality automation

UTENSILS Lunch

Monitor performance

COFFEE Break

Various applications

Incorporate what you find interesting. Want to chat about ideas? Talk to us!

Member of the Helmholtz Association RSE Summer School, September 25, 2024 Slide 1

YAML
What is it and how to write it

Key: Value

FirstKey: String

SecondKey: “String with spaces“

ThirdKey: String # followed by a comment

FourthKey: 1234 # Integer

FithKey: 1234.5 # Float

SixthKey: true # Boolean

AList:

- firstEntry

- secondEntry

AnotherList: [firstEntry, 2, 3.0]

NewList:

- NewDict: 1

AnotherEntry:

- NestingDictsAndLists

Member of the Helmholtz Association RSE Summer School, September 25, 2024 Slide 2

GitHub & GitLab
GitHub-Actions Github

Add a YAML-file to .github/workflows/

GitHub detects files there and starts Actions

Multiple YAML-files create multiple pipelines

Pipelines are independent of each other

Specify docker-image with keyword

„container“

name: REUSE Compliance Check

on: [push, pull_request]

jobs:

reuse_compliance:

runs-on: ubuntu-latest

container: alpine:3.17

steps:

- uses: actions/checkout@v3

- name: REUSE Compliance Check

uses: fsfe/reuse-action@v1

Member of the Helmholtz Association RSE Summer School, September 25, 2024 Slide 3

GitHub & GitLab
GitLab-CI Gitlab

Add a YAML-file .gitlab-ci.yml to top

level

GitLab detects the file and starts pipeline

Only a single file, only a single pipeline

Multiple stages to order execution of jobs

Specify docker-image with keyword „image“

reuse:

stage: test

image:

name: fsfe/reuse:latest

entrypoint: [""]

script:

- reuse lint

test_python:

stage: test

image: python:3.11-alpine

before_script:

- pip install .

script:

- coverage run -m pytest .

Member of the Helmholtz Association RSE Summer School, September 25, 2024 Slide 4

GitHub & GitLab
Where the CI-files differ

GitHub-Actions Github

Add a YAML-file to .github/workflows/

GitHub detects files there and starts Actions

Multiple YAML-files create multiple pipelines

Pipelines are independent of each other

Specify docker-image with keyword

„container“

Need to check out code explicitly

GitLab-CI Gitlab

Add a YAML-file .gitlab-ci.yml to top

level

GitLab detects the file and starts pipeline

Only a single file, only a single pipeline

Multiple stages to order execution of jobs

Specify docker-image with keyword „image“

Code is checked out automatically

Member of the Helmholtz Association RSE Summer School, September 25, 2024 Slide 5

Artifacts
What they are

Artifacts can be used to expose

files to other jobs and the UI

Specified per job

Specify paths and/or filenames or

extensions

Exhibit artifacts only on error, on

success or always

Artifacts are available to jobs at

later stages

test_python:

stage: test

image: mambaorg/micromamba:bullseye-slim

artifacts:

when: on_success

paths:

- htmlcov/*

expire_in: "30 days"

script:

- coverage run -m pytest .

- coverage report --show-missing

- coverage html

Member of the Helmholtz Association RSE Summer School, September 25, 2024 Slide 6

Containers
A brief introduction

Similar to VMs, keywords are: images, containers, Docker

CI pipelines are executed on ‘a system’, containers define this

system, i.e. set up the OS environment the pipelines run in.

There may be a default.

Large ‘hub’ of available images, one for every use-case, library,

programming language, …

Clearly defined starting point, always identical

Extend by toolchains/libraries you need

Benefits

Reproducible, extensible, shareable

Under your control

Reuse outside of CI and have identical environment

Member of the Helmholtz Association RSE Summer School, September 25, 2024 Slide 7

Containers
Quickstart

Large ‘hub’ of available images, one for every use-case, library, programming language, …

Pick one close to your needs or pick one from the actual project (if available)

Default registry often DockerHub

CI pipeline will download the same, fresh image and start new container every time

Perhaps have different images for compiling, testing, deploying code

Extend by toolchains and libraries you need

Depending on chosen image/OS, install additional software (every time during the pipeline)

Or: extend image in first step of pipeline, use in steps that follow

Define your own image for most control (and speed)

Ship your images, perhaps even your code within an image

Member of the Helmholtz Association RSE Summer School, September 25, 2024 Slide 8

Containers
Quickstart

Large ‘hub’ of available images, one for every use-case, library, programming language, …

Pick one close to your needs or pick one from the actual project (if available)

Default registry often DockerHub

CI pipeline will download the same, fresh image and start new container every time

Perhaps have different images for compiling, testing, deploying code

Extend by toolchains and libraries you need

Depending on chosen image/OS, install additional software (every time during the pipeline)

Or: extend image in first step of pipeline, use in steps that follow

Define your own image for most control (and speed)

Ship your images, perhaps even your code within an image

Member of the Helmholtz Association RSE Summer School, September 25, 2024 Slide 8

Containers
Quickstart

Large ‘hub’ of available images, one for every use-case, library, programming language, …

Pick one close to your needs or pick one from the actual project (if available)

Default registry often DockerHub

CI pipeline will download the same, fresh image and start new container every time

Perhaps have different images for compiling, testing, deploying code

Extend by toolchains and libraries you need

Depending on chosen image/OS, install additional software (every time during the pipeline)

Or: extend image in first step of pipeline, use in steps that follow

Define your own image for most control (and speed)

Ship your images, perhaps even your code within an image

Member of the Helmholtz Association RSE Summer School, September 25, 2024 Slide 8

Containers
Quickstart

Large ‘hub’ of available images, one for every use-case, library, programming language, …

Pick one close to your needs or pick one from the actual project (if available)

Default registry often DockerHub

CI pipeline will download the same, fresh image and start new container every time

Perhaps have different images for compiling, testing, deploying code

Extend by toolchains and libraries you need

Depending on chosen image/OS, install additional software (every time during the pipeline)

Or: extend image in first step of pipeline, use in steps that follow

Define your own image for most control (and speed)

Ship your images, perhaps even your code within an image

Member of the Helmholtz Association RSE Summer School, September 25, 2024 Slide 8

Containers
Quickstart

Large ‘hub’ of available images, one for every use-case, library, programming language, …

Pick one close to your needs or pick one from the actual project (if available)

Default registry often DockerHub

CI pipeline will download the same, fresh image and start new container every time

Perhaps have different images for compiling, testing, deploying code

Extend by toolchains and libraries you need

Depending on chosen image/OS, install additional software (every time during the pipeline)

Or: extend image in first step of pipeline, use in steps that follow

Define your own image for most control (and speed)

Ship your images, perhaps even your code within an image

Member of the Helmholtz Association RSE Summer School, September 25, 2024 Slide 8

Containers
Quickstart

Large ‘hub’ of available images, one for every use-case, library, programming language, …

Pick one close to your needs or pick one from the actual project (if available)

Default registry often DockerHub

CI pipeline will download the same, fresh image and start new container every time

Perhaps have different images for compiling, testing, deploying code

Extend by toolchains and libraries you need

Depending on chosen image/OS, install additional software (every time during the pipeline)

Or: extend image in first step of pipeline, use in steps that follow

Define your own image for most control (and speed)

Ship your images, perhaps even your code within an image

Member of the Helmholtz Association RSE Summer School, September 25, 2024 Slide 8

Containers
Quickstart

Large ‘hub’ of available images, one for every use-case, library, programming language, …

Pick one close to your needs or pick one from the actual project (if available)

Default registry often DockerHub

CI pipeline will download the same, fresh image and start new container every time

Perhaps have different images for compiling, testing, deploying code

Extend by toolchains and libraries you need

Depending on chosen image/OS, install additional software (every time during the pipeline)

Or: extend image in first step of pipeline, use in steps that follow

Define your own image for most control (and speed)

Ship your images, perhaps even your code within an image

Member of the Helmholtz Association RSE Summer School, September 25, 2024 Slide 8

Containers
Quickstart

Large ‘hub’ of available images, one for every use-case, library, programming language, …

Pick one close to your needs or pick one from the actual project (if available)

Default registry often DockerHub

CI pipeline will download the same, fresh image and start new container every time

Perhaps have different images for compiling, testing, deploying code

Extend by toolchains and libraries you need

Depending on chosen image/OS, install additional software (every time during the pipeline)

Or: extend image in first step of pipeline, use in steps that follow

Define your own image for most control (and speed)

Ship your images, perhaps even your code within an image

Member of the Helmholtz Association RSE Summer School, September 25, 2024 Slide 8

Getting things done

Now, enough talking.

You can use the time until the break to get your first CI-Pipeline

running.

Member of the Helmholtz Association RSE Summer School, September 25, 2024 Slide 9

CONTINUOUS INTEGRATION
Essentials
RSE Summer School, September 25, 2024 Jakob Fritz, Maria Lupe Barrios Sazo, Dirk Brömmel, Robert
Speck Jülich Supercomputing Center, Forschungszentrum Jülich

Member of the Helmholtz Association

Overview
Upcoming topics in context

Important elements to include

Checks on your source code

Run tests

What to execute when?

Default environment variables

Member of the Helmholtz Association RSE Summer School, September 25, 2024 Slide 10

Linting
What it is and why it is useful

A linter is a small program that checks code for stylistic or programming errors. Linters are

available for most syntaxes, from Python to HTML.

The idea is to check the code fast and automatically.

Linters analyze the static code (they do not execute it).

Linters are specific for the language to check but not for the code to check.

It checks for syntactic correctness, not for semantic one.

Pros:

PLUS-SQUARE Fast to execute

PLUS-SQUARE No (or little) need to adapt to your code

PLUS-SQUARE Finds e.g. unused variables, …

PLUS-SQUARE Check the whole code (not only paths)

Cons:

MINUS-SQUARE Do not find flaws in your logic

MINUS-SQUARE Do not check if your results are correct

Definition from SublimeLinter

Member of the Helmholtz Association RSE Summer School, September 25, 2024 Slide 11

http://web.archive.org/web/20230606032819/http://www.sublimelinter.com/en/v3.10.10/about.html

Running tests

Running tests in CI has a few advantages:

Tests are run in a reproducible way, as no manual interaction is needed.

Tests are run frequently with every push to the git-server (GitHub or GitLab)

How to run tests in CI

1 Add job in your CI-file (.gitlab-ci.yml or .github/workflows/WHATEVER.yml)

2 Select a suitable (docker-)image for your code

3 For GitHub: checkout your code

4 For compiled languages: compile your code

5 Run tests with a framework of your choice (see talk on testing)

Member of the Helmholtz Association RSE Summer School, September 25, 2024 Slide 12

Running tests

Running tests in CI has a few advantages:

Tests are run in a reproducible way, as no manual interaction is needed.

Tests are run frequently with every push to the git-server (GitHub or GitLab)

How to run tests in CI

1 Add job in your CI-file (.gitlab-ci.yml or .github/workflows/WHATEVER.yml)

2 Select a suitable (docker-)image for your code

3 For GitHub: checkout your code

4 For compiled languages: compile your code

5 Run tests with a framework of your choice (see talk on testing)

Member of the Helmholtz Association RSE Summer School, September 25, 2024 Slide 12

Running tests

GitLab Gitlab:
Entries in script are used in shell
directly

Run_tests:

image: alpine:3.17

before_script:

- PACKAGE MANAGER COMMAND

- TO INSTALL DEPENDENCIES

script:

- YOUR TESTING COMMAND HERE

GitHub Github:
Use run in steps

name: Run tests

jobs:

tests:

runs-on: ubuntu-latest

container: alpine:3.17

steps:

- uses: actions/checkout@v3

- name: Install everything needed

run: PACKAGE MANAGER COMMAND HERE

- name: Acutal testing

run: YOUR TESTING COMMAND HERE

Member of the Helmholtz Association RSE Summer School, September 25, 2024 Slide 13

Triggering & Conditionals

It is possible to run a workflow/pipeline after different events: after push, PR/MR, scheduled

On GitHub, a large number of ready-to-use
options exist

When issue and/or PR is opened, edited,

reopened, closed …etc

Keywords: on, types, branches, paths

Use workflow_dispatch to manually run

Possible to use multiple events and filter

combinations

Distinct sections can be executed under
various circumstances

Use of expressions can be helpful

Member of the Helmholtz Association RSE Summer School, September 25, 2024 Slide 14

On GitLab, keyword: rules

Can be run manually

Possible to use different conditions per job

Many rules and combinations: if, when,

changes, exist, needs, allow_failure…

You are able to configure entire pipeline with workflow keyword

Worthwhile to take a look at predefined CI/CD variables

Member of the Helmholtz Association RSE Summer School, September 25, 2024 Slide 15

Environment variables
GitLab Gitlab

Can be available when

pipeline is created or when

runner runs the job

Depending on which event

starts the pipeline

CI_PIPELINE_SOURCE gets

value, e.g.

merge_request_event,

push, web

Member of the Helmholtz Association RSE Summer School, September 25, 2024 Slide 16

Environment variables
GitHub Github

Default environment variables exist only

when runner runs the job

Contexts available for workflow
configuration before job is directed to
runner

Contexts are objects at hand to access

information about runs, variables, jobs,

environment

To mention a few: GitHub, job, runner

Can use with expressions syntax, and

functions, e.g. contains, toJSON

Most default variables have an

analogous context property

Member of the Helmholtz Association RSE Summer School, September 25, 2024 Slide 17

Getting things done

Now, enough talking.

You can use the time until the break to add tests to your pipeline.

Member of the Helmholtz Association RSE Summer School, September 25, 2024 Slide 18

CONTINUOUS INTEGRATION
Next Steps
RSE Summer School, September 25, 2024 Jakob Fritz, Maria Lupe Barrios Sazo, Dirk Brömmel, Robert
Speck Jülich Supercomputing Center, Forschungszentrum Jülich

Member of the Helmholtz Association

Overview
Upcoming topics in context

Other possible components

Set up customized containers for your needs

Keep track of performance

More on variables and handling sensitive info

Deploy websites and release code versions

Member of the Helmholtz Association RSE Summer School, September 25, 2024 Slide 19

Containers
Building & storing them

Heard earlier: interesting to run pipelines with dedicated containers

−→ Next step is building your own, custom containers

Will not discuss Dockerfiles, instead focus on how to integrate with CI

GitHub offers an easy start: using a Dockerfile

instead of an image

GitLab offers per project container registry that

is easily accessible

Member of the Helmholtz Association RSE Summer School, September 25, 2024 Slide 20

Containers
Building & storing them

Running Docker (building an image) inside Docker (in CI) is difficult, may require additional

permissions. One suggested, easy way round: do not use Docker directly, us kaniko:

Create new image from a changed Dockerfile

docker_image:

stage: docker

image:

name: gcr.io/kaniko-project/executor:debug

entrypoint: [""]

script:

- mkdir -p /kaniko/.docker

- |

echo "{\"auths\":{\"$CI_REGISTRY\":{\"username\":\"$CI_REGISTRY_USER\",\"password\":\"$CI_REGISTRY_PASSWORD\"}}}" \

> /kaniko/.docker/config.json

- |

/kaniko/executor --context $CI_PROJECT_DIR \

--dockerfile $CI_PROJECT_DIR/Dockerfile \

--destination $CI_REGISTRY_IMAGE/$CI_COMMIT_REF_SLUG:$CI_COMMIT_SHORT_SHA \

--destination $CI_REGISTRY_IMAGE/$CI_COMMIT_REF_SLUG:latest

rules:

Run when variable is set

- if: $FORCE_DOCKER_IMAGE == "true"

when: always

Run when committing to a branch or merging and changing Dockerfile

- if: $CI_COMMIT_BRANCH || $CI_PIPELINE_SOURCE == "merge_request_event"

changes:

- Dockerfile

when: always

Member of the Helmholtz Association RSE Summer School, September 25, 2024 Slide 21

Continuous Benchmarking
What is it?

The title gives it away: continuous monitoring of your code’s performance

−→ Running automatic benchmarks from the CI pipeline

This does not need to be a benchmark for simulation software, any application is speed ‘critical’

Member of the Helmholtz Association RSE Summer School, September 25, 2024 Slide 22

Continuous Benchmarking
What is it?

Member of the Helmholtz Association RSE Summer School, September 25, 2024 Slide 22

Continuous Benchmarking
What is it?

Member of the Helmholtz Association RSE Summer School, September 25, 2024 Slide 22

Continuous Benchmarking
Why should I use it?

Track evolution of performance due to code changes

Track evolution of performance due to system changes

−→ Act before users complain about slowdowns

If you don’t know you have a problem, you cannot take action to fix it

Show users what performance to expect (and how)

Test automatically on different platforms

Reduce burden on developers by separating concerns

Member of the Helmholtz Association RSE Summer School, September 25, 2024 Slide 23

Environment variables
Ease their usage, make them available

Sooner or later: too many variables to remember, though some may control your pipeline behaviour

−→ describe them and make them show up with pull-down option list for manual triggers

To get
Include in .gitlab-ci.yml

Member of the Helmholtz Association RSE Summer School, September 25, 2024 Slide 24

Environment variables
Ease their usage, make them available

Sooner or later: too many variables to remember, though some may control your pipeline behaviour

−→ describe them and make them show up with pull-down option list for manual triggers

To get
Include in .gitlab-ci.yml

Member of the Helmholtz Association RSE Summer School, September 25, 2024 Slide 24

Environment variables
Ease their usage, make them available

Sooner or later: too many variables to remember, though some may control your pipeline behaviour

−→ describe them and make them show up with pull-down option list for manual triggers

To get
Include in .gitlab-ci.yml

Member of the Helmholtz Association RSE Summer School, September 25, 2024 Slide 24

Secrets
Variables you don’t want to tell everyone

A secret is anything that you want to tightly control access to, such as API keys, passwords,

certificates, and more.

Any variable defined for a CI pipeline is accessible, can be echoed

GitHub knows ‘variables’ and ‘secrets’, GitLab defines a ‘visibility’

−→ omitted from log files or the output of your pipelines

Secrets may still be leaked by changes to the CI pipeline −→ check any changes

Services and tools promise to help with secrets management, e.g. Hashicorp Vault, Infiscal,
git-secret

Manage secrets centrally, also for a team

Control access to secrets

A private repository will not ensure secrets are kept safe.

LINKblog.gitguardian.com/secrets-api-management

Member of the Helmholtz Association RSE Summer School, September 25, 2024 Slide 25

blog.gitguardian.com/secrets-api-management

Secrets
Variables you don’t want to tell everyone

A secret is anything that you want to tightly control access to, such as API keys, passwords,

certificates, and more.

Any variable defined for a CI pipeline is accessible, can be echoed

GitHub knows ‘variables’ and ‘secrets’, GitLab defines a ‘visibility’

−→ omitted from log files or the output of your pipelines

Secrets may still be leaked by changes to the CI pipeline −→ check any changes

Services and tools promise to help with secrets management, e.g. Hashicorp Vault, Infiscal,
git-secret

Manage secrets centrally, also for a team

Control access to secrets

A private repository will not ensure secrets are kept safe.

LINKblog.gitguardian.com/secrets-api-management

Member of the Helmholtz Association RSE Summer School, September 25, 2024 Slide 25

blog.gitguardian.com/secrets-api-management

Secrets
Variables you don’t want to tell everyone

A secret is anything that you want to tightly control access to, such as API keys, passwords,

certificates, and more.

Any variable defined for a CI pipeline is accessible, can be echoed

GitHub knows ‘variables’ and ‘secrets’, GitLab defines a ‘visibility’

−→ omitted from log files or the output of your pipelines

Secrets may still be leaked by changes to the CI pipeline −→ check any changes

Services and tools promise to help with secrets management, e.g. Hashicorp Vault, Infiscal,
git-secret

Manage secrets centrally, also for a team

Control access to secrets

A private repository will not ensure secrets are kept safe.

LINKblog.gitguardian.com/secrets-api-management

Member of the Helmholtz Association RSE Summer School, September 25, 2024 Slide 25

blog.gitguardian.com/secrets-api-management

Secrets
Variables you don’t want to tell everyone

A secret is anything that you want to tightly control access to, such as API keys, passwords,

certificates, and more.

Any variable defined for a CI pipeline is accessible, can be echoed

GitHub knows ‘variables’ and ‘secrets’, GitLab defines a ‘visibility’

−→ omitted from log files or the output of your pipelines

Secrets may still be leaked by changes to the CI pipeline −→ check any changes

Services and tools promise to help with secrets management, e.g. Hashicorp Vault, Infiscal,
git-secret

Manage secrets centrally, also for a team

Control access to secrets

A private repository will not ensure secrets are kept safe.

LINKblog.gitguardian.com/secrets-api-management

Member of the Helmholtz Association RSE Summer School, September 25, 2024 Slide 25

blog.gitguardian.com/secrets-api-management

Deployment
How to deploy websites (pages)

You can use GitHub pages to build and host project, user, and organization websites

Site can be published by changes pushed to specific branch which holds static generated

website, or with a workflow that holds the site content as an artifact

In the repository settings one should specify further details in Pages options

In the branch case, when push is done in a development branch one can automatically build

the site and push content on the gh-pages branch, actions-gh-pages can help

In GitLab, Pages option enabled in Settings, General, Visibility, project, features, permissions.

Use specific pages job in .gitlab-ci.yml, artifact with content in folder named public

Member of the Helmholtz Association RSE Summer School, September 25, 2024 Slide 26

Member of the Helmholtz Association RSE Summer School, September 25, 2024 Slide 27

Deployment
Release code versions

Some of this points will be cover later in the software publication session

It is possible to use workflows and pipelines to do code releases

An option is to trigger workflow/pipeline when a tag is created

Release can include comments with changes and links to binaries

During code releases some of the options to explore include

Create or update (Digital Object Identifier) DOI in data archiving tool like Zenodo, with GitHub

integration, Hermes

Save artifacts and upload, link to assets

Automate packaging

Publish python code to package repo e.g. TestPyPI, PyPI

Member of the Helmholtz Association RSE Summer School, September 25, 2024 Slide 28

Getting things done

Now, enough talking.

You can use the time until the break to extend your CI.

Member of the Helmholtz Association RSE Summer School, September 25, 2024 Slide 29

CONTINUOUS INTEGRATION
Outlook
RSE Summer School, September 25, 2024 Jakob Fritz, Maria Lupe Barrios Sazo, Dirk Brömmel, Robert
Speck Jülich Supercomputing Center, Forschungszentrum Jülich

Member of the Helmholtz Association

Overview
Upcoming topics in context

Miscellaneous ideas

Couple pipelines

Need more freedom and control of runners?

Verify commit author

Automate potential agreement by contributors

Host websites

Create LATEX documents

Include features/tools from other projects

Combine with team chat apps

Syncing repositories

Member of the Helmholtz Association RSE Summer School, September 25, 2024 Slide 30

Coupling pipelines
In GitLab Gitlab

Multiple pipelines can be coupled using the trigger keyword.

The triggered pipelines can be in the same repository or in another repository. This is then called

parent-child or multi-project pipeline

Parent-child pipelines help to structure jobs and to run multiple similar pipelines from a single file.

Multi-project pipelines can help if multiple repositories need to work together (e.g. in microservices).

Member of the Helmholtz Association RSE Summer School, September 25, 2024 Slide 31

Coupling pipelines
In GitLab Gitlab

.gitlab-ci.yml

...

echo_downstream:

trigger:

include:

- local: downstream.yml

...

downstream.yml

stages:

- build

- test

mimic_build:

stage: build

image: alpine:latest

script:

- echo "This mimics a build job"

Member of the Helmholtz Association RSE Summer School, September 25, 2024 Slide 32

Coupling pipelines
In GitLab Gitlab

.gitlab-ci.yml

...

echo_downstream:

trigger:

include:

- local: downstream.yml

...

downstream.yml

stages:

- build

- test

mimic_build:

stage: build

image: alpine:latest

script:

- echo "This mimics a build job"

Member of the Helmholtz Association RSE Summer School, September 25, 2024 Slide 32

Coupling pipelines
In GitLab & GitHub

Triggering pipelines via the API is possible.

Checking status and downloading artifacts can also be done via API.

This makes it possible to couple pipelines/workflows. E.g. waiting in GitHub for another workflow to

finish in order to combine results from both workflows.

Member of the Helmholtz Association RSE Summer School, September 25, 2024 Slide 33

Coupling pipelines
Syncing GitHub and GitLab

Combine the benefits of GitHub (large community and visibility) with the benefits of GitLab

(possibility of self-hosted instances and long history of self-hosted runners)

Laptop-Code SERVER
Github

SERVER
Gitlab

Gitlab
Runner

push mirror

report

start

result

LINKhttps://github.com/jakob-fritz/github2lab_action

Member of the Helmholtz Association RSE Summer School, September 25, 2024 Slide 34

https://github.com/jakob-fritz/github2lab_action
https://github.com/jakob-fritz/github2lab_action

Coupling pipelines
Syncing GitHub and GitLab

Combine the benefits of GitHub (large community and visibility) with the benefits of GitLab

(possibility of self-hosted instances and long history of self-hosted runners)

Laptop-Code SERVER
Github

SERVER
Gitlab

Gitlab
Runner

push mirror

report

start

result

LINKhttps://github.com/jakob-fritz/github2lab_action

Member of the Helmholtz Association RSE Summer School, September 25, 2024 Slide 34

https://github.com/jakob-fritz/github2lab_action
https://github.com/jakob-fritz/github2lab_action

Using your own runners
For special usecases

GitHub and GitLab offer runners to projects. On self-hosted GitLab-Instances, the admins can

provide runners to all projects of that instance.

Furthermore, own runners can be set up and registered at the platform (GitHub or GitLab).

Pros:

PLUS-SQUARE Known what hardware is used for the

runners and if/when they change

PLUS-SQUARE Can be decided, if multiple jobs can run in

parallel on the hardware

Cons:

MINUS-SQUARE Additional work for set-up and

maintenance

MINUS-SQUARE Often, hardware architecture is not

relevant in containers

Bottom line:

It is possible to have runners, that are only available to a group or a single project

May be helpful when doing performance analysis or when needing resources not provided by

other runners

If not needed: save yourself the effort of creating and maintaining

Member of the Helmholtz Association RSE Summer School, September 25, 2024 Slide 35

What CI can also be used for
Automizing repetitive tasks

Also for repetitive tasks, the benefits of CI hold true. These include repeatability and explicit

documentation of how processes are done.

CI can therefore also be used for (small) jobs that occur in a specific frequency. This can include

updates to a Database, updates of a website, …

The downside of this approach is, that the environment needs to be created new every time, as you

use a new container each run.

Also be aware, that you use external services/computers, so be nice with the usage (regarding

duration and frequency of execution).

An example is a database and website, I update every month.

Member of the Helmholtz Association RSE Summer School, September 25, 2024 Slide 36

What CI can also be used for
Hosting websites

In Addition to hosting a website with the documentation of your code, GitHub and GitLab can also

be used to host websites, that are not documentation.

This approach offers a few advantages:

Version controlled website (You can track and roll-back changes made)

Collaborative creation/updates with multiple people and even PRs/MRs

No need to take care of hosting yourself

Known system (you already know how to use git and GH, GL)

However, when using GitLab, the admins of the instance need to have that feature enabled (called

pages). The Helmholtz Codebase has this feature enabled.

An example is the HiRSE_PS Website that is maintained in a GitHub repository.

Member of the Helmholtz Association RSE Summer School, September 25, 2024 Slide 37

https://codebase.helmholtz.cloud/
https://www.helmholtz-hirse.de/
https://github.com/Helmholtz-HiRSE/helmholtz-hirse.github.io

What CI can also be used for
Compiling LaTeX

Versioning LATEX in git can be a good idea to know when something changed and keep the previous

versions.

Also, CI of the platforms (GitHub & GitLab) can compile the document. This helps, as you know

when some change broke your document. Also, the document is build the same way regardless,

who made changes. The compiled document can be made available as artifact.

This presentation is an example for this approach.

Furthermore, linting the document is possible.

Member of the Helmholtz Association RSE Summer School, September 25, 2024 Slide 38

Usage of Git(Hub|Lab)
Signing commits

Commit authors are defined in a project’s (or global) git settings and can be chosen at will

−→ Thus no reliable information

−→ Do not use to judge security implications by this

Signing commits will verify who committed what, a CI pipeline can be used to check that.

git supports signing either via GPG, x.509, or ssh

Requires settings for git (set up of format and key, allowed keys, trust)

Requires providing matching information to Git(Hub|Lab) (upload keys)

Member of the Helmholtz Association RSE Summer School, September 25, 2024 Slide 39

Usage of Git(Hub|Lab)
Signing commits

Commit authors are defined in a project’s (or global) git settings and can be chosen at will

−→ Thus no reliable information

−→ Do not use to judge security implications by this

Signing commits will verify who committed what, a CI pipeline can be used to check that.

git supports signing either via GPG, x.509, or ssh

Requires settings for git (set up of format and key, allowed keys, trust)

Requires providing matching information to Git(Hub|Lab) (upload keys)

Member of the Helmholtz Association RSE Summer School, September 25, 2024 Slide 39

Usage of Git(Hub|Lab)
Signing commits

Commit authors are defined in a project’s (or global) git settings and can be chosen at will

−→ Thus no reliable information

−→ Do not use to judge security implications by this

Signing commits will verify who committed what, a CI pipeline can be used to check that.

git supports signing either via GPG, x.509, or ssh

Requires settings for git (set up of format and key, allowed keys, trust)

Requires providing matching information to Git(Hub|Lab) (upload keys)

Member of the Helmholtz Association RSE Summer School, September 25, 2024 Slide 39

Usage of Git(Hub|Lab)
CLAs & DCOs Certificate

Your code has a(n outgoing) license and you have (external) contributors. Now what?

−→ You might want to ensure you can include content and keep your license.

This is about ensuring necessary rights are transferred to your project.

CLA: Contributor License Agreement (an incoming license)

DCO: Developer Certificate of Origin

Either requirement needs to be included/stated in repo.

LINKcontributoragreements.org/ca-cla-chooser/ LINKdevelopercertificate.org/

Member of the Helmholtz Association RSE Summer School, September 25, 2024 Slide 40

contributoragreements.org/ca-cla-chooser/
developercertificate.org/

Usage of Git(Hub|Lab)
CLAs & DCOs Certificate

Choice may depend on your code’s (future?) license. It may depend on whether you are (really!)

dealing with individuals or institutions. To quote:

CLAs are more formal and legally binding, while DCOs are more informal and rely on the

community’s trust and good faith.

CLAs require contributors to sign a legal agreement, which can be a barrier to entry for some

contributors.

DCOs, on the other hand, require only a simple sign-off line, which is easier for contributors to

understand and comply with.

LINKosr.finos.org/docs/bok/artifacts/clas-and-dcos

IANAL…see your trusted lawyer for advice, speak to your institution

Management tooling does exist (mostly on GitHub, see us for GitLab). Merge request may be

conditional on CLA/DCO being present.

Member of the Helmholtz Association RSE Summer School, September 25, 2024 Slide 41

osr.finos.org/docs/bok/artifacts/clas-and-dcos

Integration and not reinventing the wheel
Market Place in GitHub

Find countless actions, developed by others,

to include in your workflow.

You can add them in your workflows with

keyword uses

For specifying parameters with

Examples that you might already use, and
can be helpful:

checkout, actions/checkout@v4

python, setup-python

auto commit, git-auto-commit

You can also create your own actions!

Member of the Helmholtz Association RSE Summer School, September 25, 2024 Slide 42

Integration and not reinventing the wheel
Integrating external YAML-files in GitLab-CI

Don’t repeat yourself, include .yml files created by you or others

Add include with project, remote, local, template, depending on where the files are located

Can utilize or create components in a CI/CD catalog, with possibility of specifying parameters

and share within GitLab instance

Supports the use of inputs and rules

Member of the Helmholtz Association RSE Summer School, September 25, 2024 Slide 43

Integration and not reinventing the wheel
Integration into messengers

Some groups collaborate through team chat applications like slack, rocketchat, matrix

Getting notifications from GitHub or GitLab activity can be practical

Feasible to receive details about CI success or failures

Chat platforms provide integrations

For more customized reports:

gh actions that provide support like action-slack-notify or slack-GitHub-action

Needs a token or webhook for permission to post on the chat

Interact via curl

Member of the Helmholtz Association RSE Summer School, September 25, 2024 Slide 44

Integration and not reinventing the wheel
Integration into messengers

Some groups collaborate through team chat applications like slack, rocketchat, matrix

Getting notifications from GitHub or GitLab activity can be practical

Feasible to receive details about CI success or failures

Chat platforms provide integrations

For more customized reports:

gh actions that provide support like action-slack-notify or slack-GitHub-action

Needs a token or webhook for permission to post on the chat

Interact via curl

Member of the Helmholtz Association RSE Summer School, September 25, 2024 Slide 44

Combining Repositories
Git submodules

In Git it is possible to have a repository within a

repository while keeping commits separated

A potential way to handle libraries, dependencies

In GitHub workflows, one can build project with

explicit call to git submodule update

--init or option with checkout action

In GitLab pipelines, one can set variable

GIT_SUBMODULE_STRATEGY to recursive

Access tokens if content from other non-public

repo needs to be used

CI can also be used to update submodule

Member of the Helmholtz Association RSE Summer School, September 25, 2024 Slide 45

That’s it

Thank you for your attention. Feel free to ask questions now and

later this week!

Member of the Helmholtz Association RSE Summer School, September 25, 2024 Slide 46

CONTINUOUS INTEGRATION
Goodbye
RSE Summer School, September 25, 2024 Jakob Fritz, Maria Lupe Barrios Sazo, Dirk Brömmel, Robert
Speck Jülich Supercomputing Center, Forschungszentrum Jülich

Member of the Helmholtz Association

	Overview
	Structure of the day

	YAML
	What is it and how to write it

	GitHub & GitLab
	GitHub-Actions
	GitLab-CI
	Where the CI-files differ

	Artifacts
	What they are

	Containers
	A brief introduction
	Quickstart

	Getting things done
	Overview
	Upcoming topics in context

	Linting
	What it is and why it is useful

	Running tests
	

	Triggering & Conditionals
	
	

	Environment variables
	GitLab
	GitHub

	Getting things done
	Overview
	Upcoming topics in context

	Containers
	Building & storing them

	Continuous Benchmarking
	What is it?
	Why should I use it?

	Environment variables
	Ease their usage, make them available

	Secrets
	Variables you don't want to tell everyone

	Deployment
	How to deploy websites (pages)
	Release code versions

	Getting things done
	Overview
	Upcoming topics in context

	Coupling pipelines
	In GitLab
	In GitLab & GitHub
	Syncing GitHub and GitLab

	Using your own runners
	For special usecases

	What CI can also be used for
	Automizing repetitive tasks
	Hosting websites
	Compiling LaTeX

	Usage of Git(Hub|Lab)
	Signing commits
	CLAs & DCOs

	Integration and not reinventing the wheel
	Market Place in GitHub
	Integrating external YAML-files in GitLab-CI
	Integration into messengers

	Combining Repositories
	Git submodules

	That's it

