001031656 001__ 1031656
001031656 005__ 20250411203140.0
001031656 0247_ $$2doi$$a10.12751/NNCN.BC2024.031
001031656 037__ $$aFZJ-2024-05772
001031656 041__ $$aEnglish
001031656 1001_ $$0P:(DE-Juel1)180365$$aKöhler, Cristiano A.$$b0$$eCorresponding author$$ufzj
001031656 1112_ $$aBernstein Conference 2024$$cFrankfurt am Main$$d2024-09-29 - 2024-10-02$$wGermany
001031656 245__ $$aTracking the provenance of data generation and analysis in NEST simulations
001031656 260__ $$c2024
001031656 3367_ $$033$$2EndNote$$aConference Paper
001031656 3367_ $$2BibTeX$$aINPROCEEDINGS
001031656 3367_ $$2DRIVER$$aconferenceObject
001031656 3367_ $$2ORCID$$aCONFERENCE_POSTER
001031656 3367_ $$2DataCite$$aOutput Types/Conference Poster
001031656 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1744377497_4024$$xAfter Call
001031656 520__ $$aNeural simulations using NEST are typically executed by a Python script that configures the simulator kernel, builds the network, and runs the simulation. The result is a series of files containing the simulated network activity, which can then be analyzed to provide insights into the neural activity. Despite the availability of file headers to identify the origin of the outputs, a user analyzing the data must still interpret the findings with respect to the simulation setup, network connectivity, and parameters of the neuronal and synaptic models. This information is not immediately available, as the exact details of the simulation configuration are understandable only by referring to the original script, which makes it challenging to share simulation results, especially in collaborative contexts. In addition, the researcher may change simulation parameters over time, and tracking those changes becomes increasingly difficult among collaborators with access to shared files with the simulation output. Therefore, the final results of a NEST simulation lack detailed provenance to link each output to the detailed description of how the network was instantiated and run.Here we showcase how Alpaca (doi:10.5281/zenodo.10276510; RRID:SCR_023739) [1] helps to capture provenance in a typical NEST simulation experiment and subsequent data analysis with the Elephant (doi:10.5281/zenodo.1186602; RRID:SCR_003833) toolbox [2]. Alpaca is a toolbox that captures provenance during the execution of Python scripts. It uses decorators to record the details of each function executed and associated data objects. First, we demonstrate that Alpaca can capture end-to-end provenance in a workflow that executes multiple simulations with distinct parameters and performs a combined analysis of all generated data. Second, we highlight how data objects are annotated with simulation details using the Neo library [3] to identify the data source in the simulation. Third, we show how the details of the network creation using the PyNEST interface are captured and related to each data output and analysis result. In the end, this approach contributes to representing the simulated data and analysis results according to the FAIR principles [4]. The results findability is improved with the detailed provenance, the interoperability is supported by a standardized data model, and data may be reused due to the enhanced description of the data generation and analysis processes. REFERENCES [1] Köhler, C.A., Ulianych, D., Grün, S., Decker, S., Denker, M., 2024. Facilitating the sharing of electrophysiology data analysis results through in-depth provenance capture. eNeuro 11, ENEURO.0476-23.2024, 10.1523/ENEURO.0476-23.2024[2] Denker, M., Yegenoglu, A., Grün, S., 2018. Collaborative HPC-enabled workflows on the HBP Collaboratory using the Elephant framework. Neuroinformatics 2018, P19, 10.12751/incf.ni2018.0019[3] Garcia, S., Guarino, D., Jaillet, F., Jennings, T., Pröpper, R., Rautenberg, P.L., Rodgers, C.C., Sobolev, A., Wachtler, T., Yger, P., Davison, A.P., 2014. Neo: an object model for handling electrophysiology data in multiple formats. Frontiers in Neuroinformatics 8, 10, 10.3389/fninf.2014.00010[4] Wilkinson, M.D., Dumontier, M., Aalbersberg, Ij.J., Appleton, G., Axton, M., Baak, A., Blomberg, N. et al., 2016. The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data 3, 160018, 10.1038/sdata.2016.18
001031656 536__ $$0G:(DE-HGF)POF4-5235$$a5235 - Digitization of Neuroscience and User-Community Building (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001031656 536__ $$0G:(DE-HGF)POF4-5231$$a5231 - Neuroscientific Foundations (POF4-523)$$cPOF4-523$$fPOF IV$$x1
001031656 536__ $$0G:(DE-Juel1)HDS-LEE-20190612$$aHDS LEE - Helmholtz School for Data Science in Life, Earth and Energy (HDS LEE) (HDS-LEE-20190612)$$cHDS-LEE-20190612$$x2
001031656 536__ $$0G:(EU-Grant)101147319$$aEBRAINS 2.0 - EBRAINS 2.0: A Research Infrastructure to Advance Neuroscience and Brain Health (101147319)$$c101147319$$fHORIZON-INFRA-2022-SERV-B-01$$x3
001031656 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x4
001031656 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x5
001031656 536__ $$0G:(DE-Juel-1)iBehave-20220812$$aAlgorithms of Adaptive Behavior and their Neuronal Implementation in Health and Disease (iBehave-20220812)$$ciBehave-20220812$$x6
001031656 536__ $$0G:(DE-Juel1)JL SMHB-2021-2027$$aJL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)$$cJL SMHB-2021-2027$$x7
001031656 588__ $$aDataset connected to DataCite
001031656 650_7 $$2Other$$aComputational Neuroscience
001031656 650_7 $$2Other$$aData analysis, machine learning and neuroinformatics
001031656 7001_ $$0P:(DE-Juel1)190659$$aKern, Moritz$$b1$$ufzj
001031656 7001_ $$0P:(DE-Juel1)144168$$aGrün, Sonja$$b2$$ufzj
001031656 7001_ $$0P:(DE-Juel1)144807$$aDenker, Michael$$b3$$ufzj
001031656 773__ $$a10.12751/NNCN.BC2024.031
001031656 909CO $$ooai:juser.fz-juelich.de:1031656$$popenaire$$pec_fundedresources$$pVDB
001031656 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180365$$aForschungszentrum Jülich$$b0$$kFZJ
001031656 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)180365$$aRWTH Aachen$$b0$$kRWTH
001031656 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190659$$aForschungszentrum Jülich$$b1$$kFZJ
001031656 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144168$$aForschungszentrum Jülich$$b2$$kFZJ
001031656 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)144168$$aRWTH Aachen$$b2$$kRWTH
001031656 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144807$$aForschungszentrum Jülich$$b3$$kFZJ
001031656 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5235$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001031656 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5231$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x1
001031656 9141_ $$y2024
001031656 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lComputational and Systems Neuroscience$$x0
001031656 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x1
001031656 980__ $$aposter
001031656 980__ $$aVDB
001031656 980__ $$aI:(DE-Juel1)IAS-6-20130828
001031656 980__ $$aI:(DE-Juel1)INM-10-20170113
001031656 980__ $$aUNRESTRICTED