001031666 001__ 1031666
001031666 005__ 20241009205239.0
001031666 037__ $$aFZJ-2024-05776
001031666 1001_ $$aStellhorn, Annika$$b0
001031666 1112_ $$aJCNS Workshop 2024, Trends and Perspectives in Neutron Scattering: Functional Interfaces$$cEvangelische Akademie Tutzing$$d2024-10-08 - 2024-10-11$$wGermany
001031666 245__ $$aMagnetic chirality in superconducting/ferromagneticheterostruc-tures: insight via polarized GISANS
001031666 260__ $$c2024
001031666 3367_ $$033$$2EndNote$$aConference Paper
001031666 3367_ $$2DataCite$$aOther
001031666 3367_ $$2BibTeX$$aINPROCEEDINGS
001031666 3367_ $$2DRIVER$$aconferenceObject
001031666 3367_ $$2ORCID$$aLECTURE_SPEECH
001031666 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1728459695_8333$$xInvited
001031666 520__ $$aThe coexistence of different order parameters can lead to exotic new quantum phenomena. In hardcondensed matter materials, their interplay often generates magnetic chiral structures with correlationson the nanometer and mesoscopic length scale, which can be explored by polarization-analyzedSmall-Angle-Neutron-Scattering (SANS) in bulk systems, and by its surface-sensitive counterpartGrazing-Incidence-SANS (GISANS) in thin film structures. Thin film Nb/FePd exhibits coexistingsuperconducting and ferromagnetic phases, affecting both the superconducting and the magneticorder around its superconducting Tc [1,2]. While around Tc in Nb the superconducting state is confinedabove the domain walls of FePd, the superconducting state itself is affecting the width wDWof magnetic domain walls in FePd [1].Although a Dzyaloshinskii–Moriya Interaction (DMI) leading to magnetic chirality is not expectedin the L10-structured FePd, its domain walls obtain a preferred chiral direction, unveiled by polarizedGISANS. An extensive study combining GISANS, circular-dichroism X-ray Resonant MagneticScattering (CD-XRMS), and Density Functional Theory (DFT), yields unique insight into the chiralwall formation and its origin.At the ESS, neutron polarization analysis will be supported on many instruments [3], and togetherwith a wide range of sample environments will enable pioneering science projects. Based on theabove-mentioned science case using polarized GISANS, I will additionally present the impact frominstrumentational and data reduction aspects.[1] A. Stellhorn, PhD thesis, RWTH Aachen University (2021).[2] A. Stellhorn et al., New Journal of Physics 22, 093001 (2020).[3] W. T. Lee et al., Report on ESS Polarisation Workshop, ESS-3549713 (2020).
001031666 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
001031666 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x1
001031666 7001_ $$aBacks, Alex$$b1
001031666 7001_ $$aJackson, Andrew$$b2
001031666 7001_ $$aBlackburn, Elizabeth$$b3
001031666 7001_ $$0P:(DE-Juel1)130754$$aKentzinger, Emmanuel$$b4$$ufzj
001031666 7001_ $$aLee, Wai Tung$$b5
001031666 909CO $$ooai:juser.fz-juelich.de:1031666$$pVDB
001031666 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130754$$aForschungszentrum Jülich$$b4$$kFZJ
001031666 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0
001031666 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x1
001031666 9141_ $$y2024
001031666 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x0
001031666 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
001031666 980__ $$aconf
001031666 980__ $$aVDB
001031666 980__ $$aI:(DE-Juel1)JCNS-2-20110106
001031666 980__ $$aI:(DE-82)080009_20140620
001031666 980__ $$aUNRESTRICTED