001     1031666
005     20241009205239.0
037 _ _ |a FZJ-2024-05776
100 1 _ |a Stellhorn, Annika
|b 0
111 2 _ |a JCNS Workshop 2024, Trends and Perspectives in Neutron Scattering: Functional Interfaces
|c Evangelische Akademie Tutzing
|d 2024-10-08 - 2024-10-11
|w Germany
245 _ _ |a Magnetic chirality in superconducting/ferromagneticheterostruc-tures: insight via polarized GISANS
260 _ _ |c 2024
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1728459695_8333
|2 PUB:(DE-HGF)
|x Invited
520 _ _ |a The coexistence of different order parameters can lead to exotic new quantum phenomena. In hardcondensed matter materials, their interplay often generates magnetic chiral structures with correlationson the nanometer and mesoscopic length scale, which can be explored by polarization-analyzedSmall-Angle-Neutron-Scattering (SANS) in bulk systems, and by its surface-sensitive counterpartGrazing-Incidence-SANS (GISANS) in thin film structures. Thin film Nb/FePd exhibits coexistingsuperconducting and ferromagnetic phases, affecting both the superconducting and the magneticorder around its superconducting Tc [1,2]. While around Tc in Nb the superconducting state is confinedabove the domain walls of FePd, the superconducting state itself is affecting the width wDWof magnetic domain walls in FePd [1].Although a Dzyaloshinskii–Moriya Interaction (DMI) leading to magnetic chirality is not expectedin the L10-structured FePd, its domain walls obtain a preferred chiral direction, unveiled by polarizedGISANS. An extensive study combining GISANS, circular-dichroism X-ray Resonant MagneticScattering (CD-XRMS), and Density Functional Theory (DFT), yields unique insight into the chiralwall formation and its origin.At the ESS, neutron polarization analysis will be supported on many instruments [3], and togetherwith a wide range of sample environments will enable pioneering science projects. Based on theabove-mentioned science case using polarized GISANS, I will additionally present the impact frominstrumentational and data reduction aspects.[1] A. Stellhorn, PhD thesis, RWTH Aachen University (2021).[2] A. Stellhorn et al., New Journal of Physics 22, 093001 (2020).[3] W. T. Lee et al., Report on ESS Polarisation Workshop, ESS-3549713 (2020).
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)
|0 G:(DE-HGF)POF4-6G4
|c POF4-6G4
|f POF IV
|x 1
700 1 _ |a Backs, Alex
|b 1
700 1 _ |a Jackson, Andrew
|b 2
700 1 _ |a Blackburn, Elizabeth
|b 3
700 1 _ |a Kentzinger, Emmanuel
|0 P:(DE-Juel1)130754
|b 4
|u fzj
700 1 _ |a Lee, Wai Tung
|b 5
909 C O |o oai:juser.fz-juelich.de:1031666
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130754
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G4
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Jülich Centre for Neutron Research (JCNS) (FZJ)
|x 1
914 1 _ |y 2024
920 1 _ |0 I:(DE-Juel1)JCNS-2-20110106
|k JCNS-2
|l Streumethoden
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JCNS-2-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21