001031668 001__ 1031668
001031668 005__ 20241009205239.0
001031668 037__ $$aFZJ-2024-05778
001031668 1001_ $$0P:(DE-Juel1)180455$$aHe, Suqin$$b0$$ufzj
001031668 1112_ $$aJCNS Workshop 2024, Trends and Perspectives in Neutron Scattering: Functional Interfaces$$cEvangelische Akademie Tutzing$$d2024-10-08 - 2024-10-11$$wGermany
001031668 245__ $$aStructural, magnetic and electrical properties of oxygendeficientLa(0.6)Sr(0.4)CoO(3-δ) thin films
001031668 260__ $$c2024
001031668 3367_ $$033$$2EndNote$$aConference Paper
001031668 3367_ $$2DataCite$$aOther
001031668 3367_ $$2BibTeX$$aINPROCEEDINGS
001031668 3367_ $$2DRIVER$$aconferenceObject
001031668 3367_ $$2ORCID$$aLECTURE_SPEECH
001031668 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1728463731_13342$$xInvited
001031668 520__ $$aControlled oxygen release or uptake in complex oxides can induce changes of the crystal structureand simultaneously of the magnetic and electrical properties. Consequently, a systematic control ofthe oxygen stoichiometry can enable potential applications in spintronics, solid oxide fuel cells andcatalysts. In La0.6Sr0.4CoO3-δ (LSCO) the gradual oxygen release triggers a phase transition fromthe initial ferromagnetic (FM) perovskite (PV) structure to an oxygen vacancy layered antiferromagnetic(AFM) brownmillerite (BM) structure.We have studied LSCO thin films fabricated by pulsed laser deposition (PLD). In situ x-ray diffractionduring thermal annealing reveals the topotactic phase transition of the LSCO thin films, which can beattributed to the release of oxygen and ultimately the transition to a coherently ordered BM phase.By comparing the magnetic and electronic properties of the sample at different oxygen deficientstates, we demonstrate that the magnetic and electronic transitions are apart from the structuralphase transition [1].Using in situ polarized neutron reflectometry (PNR) measured at the MR reflectometer (SNS/OakRidge), we explore the nuclear scattering density (nSLD) and quantify the change in oxygen stoichiometryand the magnetization of the LSCO film during annealing. The PNR data shows a significantdecrease of nSLD for the annealed film indicating a reduction in oxygen concentration. The oxygenstoichiometry is found to vary from La0.6Sr0.4CoO3 before annealing to about La0.6Sr0.4CoO2.5for annealed films. We find that disordered oxygen vacancies forming in the initial phase of annealingquickly govern the magnetic properties of the film by triggering a FM to AF transition [1].[1] S. He, O. Petracic, V. Lauter, L. Cao, Y. Zhou, M. L. Weber, J. Schubert, O. Concepción, R. Dittmann, R. Waser, T. Brückel, F. Gunkel, La0.6Sr0.4CoO3−δ Films Under Deoxygenation: Magnetic And Electronic Transitions Are Apart from The Structural Phase TransitionAdv. Funct. Mater. 2024, 34, 2313208.
001031668 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
001031668 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x1
001031668 7001_ $$0P:(DE-Juel1)145895$$aPetracic, Oleg$$b1$$ufzj
001031668 7001_ $$aCao, Lei$$b2
001031668 7001_ $$0P:(DE-HGF)0$$aLauter, Valeria$$b3
001031668 7001_ $$0P:(DE-HGF)0$$aZhou, Yunxia$$b4
001031668 7001_ $$aWeber, Moritz$$b5
001031668 7001_ $$0P:(DE-Juel1)128631$$aSchubert, Jürgen$$b6$$ufzj
001031668 7001_ $$0P:(DE-Juel1)130620$$aDittmann, Regina$$b7$$ufzj
001031668 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b8
001031668 7001_ $$0P:(DE-Juel1)130572$$aBrückel, Thomas$$b9$$ufzj
001031668 7001_ $$0P:(DE-Juel1)130677$$aGunkel, Felix$$b10$$ufzj
001031668 909CO $$ooai:juser.fz-juelich.de:1031668$$pVDB
001031668 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180455$$aForschungszentrum Jülich$$b0$$kFZJ
001031668 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145895$$aForschungszentrum Jülich$$b1$$kFZJ
001031668 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128631$$aForschungszentrum Jülich$$b6$$kFZJ
001031668 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130620$$aForschungszentrum Jülich$$b7$$kFZJ
001031668 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich$$b8$$kFZJ
001031668 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130572$$aForschungszentrum Jülich$$b9$$kFZJ
001031668 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130677$$aForschungszentrum Jülich$$b10$$kFZJ
001031668 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0
001031668 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x1
001031668 9141_ $$y2024
001031668 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x0
001031668 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
001031668 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x2
001031668 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x3
001031668 980__ $$aconf
001031668 980__ $$aVDB
001031668 980__ $$aI:(DE-Juel1)JCNS-2-20110106
001031668 980__ $$aI:(DE-82)080009_20140620
001031668 980__ $$aI:(DE-Juel1)PGI-7-20110106
001031668 980__ $$aI:(DE-Juel1)PGI-9-20110106
001031668 980__ $$aUNRESTRICTED