| Home > Publications database > Structural, magnetic and electrical properties of oxygendeficientLa(0.6)Sr(0.4)CoO(3-δ) thin films > print |
| 001 | 1031668 | ||
| 005 | 20241009205239.0 | ||
| 037 | _ | _ | |a FZJ-2024-05778 |
| 100 | 1 | _ | |a He, Suqin |0 P:(DE-Juel1)180455 |b 0 |u fzj |
| 111 | 2 | _ | |a JCNS Workshop 2024, Trends and Perspectives in Neutron Scattering: Functional Interfaces |c Evangelische Akademie Tutzing |d 2024-10-08 - 2024-10-11 |w Germany |
| 245 | _ | _ | |a Structural, magnetic and electrical properties of oxygendeficientLa(0.6)Sr(0.4)CoO(3-δ) thin films |
| 260 | _ | _ | |c 2024 |
| 336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
| 336 | 7 | _ | |a Other |2 DataCite |
| 336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
| 336 | 7 | _ | |a conferenceObject |2 DRIVER |
| 336 | 7 | _ | |a LECTURE_SPEECH |2 ORCID |
| 336 | 7 | _ | |a Conference Presentation |b conf |m conf |0 PUB:(DE-HGF)6 |s 1728463731_13342 |2 PUB:(DE-HGF) |x Invited |
| 520 | _ | _ | |a Controlled oxygen release or uptake in complex oxides can induce changes of the crystal structureand simultaneously of the magnetic and electrical properties. Consequently, a systematic control ofthe oxygen stoichiometry can enable potential applications in spintronics, solid oxide fuel cells andcatalysts. In La0.6Sr0.4CoO3-δ (LSCO) the gradual oxygen release triggers a phase transition fromthe initial ferromagnetic (FM) perovskite (PV) structure to an oxygen vacancy layered antiferromagnetic(AFM) brownmillerite (BM) structure.We have studied LSCO thin films fabricated by pulsed laser deposition (PLD). In situ x-ray diffractionduring thermal annealing reveals the topotactic phase transition of the LSCO thin films, which can beattributed to the release of oxygen and ultimately the transition to a coherently ordered BM phase.By comparing the magnetic and electronic properties of the sample at different oxygen deficientstates, we demonstrate that the magnetic and electronic transitions are apart from the structuralphase transition [1].Using in situ polarized neutron reflectometry (PNR) measured at the MR reflectometer (SNS/OakRidge), we explore the nuclear scattering density (nSLD) and quantify the change in oxygen stoichiometryand the magnetization of the LSCO film during annealing. The PNR data shows a significantdecrease of nSLD for the annealed film indicating a reduction in oxygen concentration. The oxygenstoichiometry is found to vary from La0.6Sr0.4CoO3 before annealing to about La0.6Sr0.4CoO2.5for annealed films. We find that disordered oxygen vacancies forming in the initial phase of annealingquickly govern the magnetic properties of the film by triggering a FM to AF transition [1].[1] S. He, O. Petracic, V. Lauter, L. Cao, Y. Zhou, M. L. Weber, J. Schubert, O. Concepción, R. Dittmann, R. Waser, T. Brückel, F. Gunkel, La0.6Sr0.4CoO3−δ Films Under Deoxygenation: Magnetic And Electronic Transitions Are Apart from The Structural Phase TransitionAdv. Funct. Mater. 2024, 34, 2313208. |
| 536 | _ | _ | |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632) |0 G:(DE-HGF)POF4-632 |c POF4-632 |f POF IV |x 0 |
| 536 | _ | _ | |a 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4) |0 G:(DE-HGF)POF4-6G4 |c POF4-6G4 |f POF IV |x 1 |
| 700 | 1 | _ | |a Petracic, Oleg |0 P:(DE-Juel1)145895 |b 1 |u fzj |
| 700 | 1 | _ | |a Cao, Lei |b 2 |
| 700 | 1 | _ | |a Lauter, Valeria |0 P:(DE-HGF)0 |b 3 |
| 700 | 1 | _ | |a Zhou, Yunxia |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a Weber, Moritz |b 5 |
| 700 | 1 | _ | |a Schubert, Jürgen |0 P:(DE-Juel1)128631 |b 6 |u fzj |
| 700 | 1 | _ | |a Dittmann, Regina |0 P:(DE-Juel1)130620 |b 7 |u fzj |
| 700 | 1 | _ | |a Waser, R. |0 P:(DE-Juel1)131022 |b 8 |
| 700 | 1 | _ | |a Brückel, Thomas |0 P:(DE-Juel1)130572 |b 9 |u fzj |
| 700 | 1 | _ | |a Gunkel, Felix |0 P:(DE-Juel1)130677 |b 10 |u fzj |
| 909 | C | O | |o oai:juser.fz-juelich.de:1031668 |p VDB |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)180455 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)145895 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)128631 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)130620 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)131022 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)130572 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 10 |6 P:(DE-Juel1)130677 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF4-630 |0 G:(DE-HGF)POF4-632 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Materials – Quantum, Complex and Functional Materials |x 0 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Großgeräte: Materie |1 G:(DE-HGF)POF4-6G0 |0 G:(DE-HGF)POF4-6G4 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Jülich Centre for Neutron Research (JCNS) (FZJ) |x 1 |
| 914 | 1 | _ | |y 2024 |
| 920 | 1 | _ | |0 I:(DE-Juel1)JCNS-2-20110106 |k JCNS-2 |l Streumethoden |x 0 |
| 920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 1 |
| 920 | 1 | _ | |0 I:(DE-Juel1)PGI-7-20110106 |k PGI-7 |l Elektronische Materialien |x 2 |
| 920 | 1 | _ | |0 I:(DE-Juel1)PGI-9-20110106 |k PGI-9 |l Halbleiter-Nanoelektronik |x 3 |
| 980 | _ | _ | |a conf |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)JCNS-2-20110106 |
| 980 | _ | _ | |a I:(DE-82)080009_20140620 |
| 980 | _ | _ | |a I:(DE-Juel1)PGI-7-20110106 |
| 980 | _ | _ | |a I:(DE-Juel1)PGI-9-20110106 |
| 980 | _ | _ | |a UNRESTRICTED |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|