001031670 001__ 1031670
001031670 005__ 20250203124528.0
001031670 0247_ $$2doi$$a10.3791/67088
001031670 0247_ $$2pmid$$a39555784
001031670 0247_ $$2WOS$$aWOS:001368152600029
001031670 037__ $$aFZJ-2024-05780
001031670 082__ $$a570
001031670 1001_ $$0P:(DE-Juel1)180657$$aLakomek, Nils$$b0$$eCorresponding author$$ufzj
001031670 245__ $$aNMR 15N Relaxation Experiments for the Investigation of Picosecond to Nanoseconds Structural Dynamics of Proteins
001031670 260__ $$aCambridge, MA$$bJoVE$$c2024
001031670 3367_ $$2DRIVER$$aarticle
001031670 3367_ $$2DataCite$$aOutput Types/Journal article
001031670 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1736337895_5688
001031670 3367_ $$2BibTeX$$aARTICLE
001031670 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001031670 3367_ $$00$$2EndNote$$aJournal Article
001031670 520__ $$aNuclear magnetic resonance (NMR) spectroscopy allows studying proteins in solution and under physiological temperatures. Frequently, either the amide groups of the protein backbone or the methyl groups in side chains are used as reporters of structural dynamics in proteins. A structural dynamics study of the protein backbone of globular proteins on 15N labeled and fully protonated samples usually works well for proteins with a molecular weight of up to 50 kDa. When side chain deuteration in combination with transverse relaxation optimized spectroscopy (TROSY) is applied, this limit can be extended up to 200 kDa for globular proteins and up to 1 MDa when the focus is on the side chains. When intrinsically disordered proteins (IDPs) or proteins with intrinsically disordered regions (IDRs) are investigated, these weight limitations do not apply but can go well beyond. The reason is that IDPs or IDRs, characterized by high internal flexibility, are frequently dynamically decoupled. Various NMR methods offer atomic-resolution insights into structural protein dynamics across a wide range of time scales, from picoseconds up to hours. Standard 15N relaxation measurements overview a protein's internal flexibility and characterize the protein backbone dynamics experienced on the fast pico- to nanosecond timescale. This article presents a hands-on protocol for setting up and recording NMR 15N R1, R2, and heteronuclear Overhauser effect (hetNOE) experiments. We show exemplary data and explain how to interpret them simply qualitatively before any more sophisticated analysis.
001031670 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
001031670 7001_ $$0P:(DE-Juel1)187436$$aStief, Tobias$$b1$$ufzj
001031670 7001_ $$0P:(DE-Juel1)191152$$aVormann, Katharina$$b2$$ufzj
001031670 773__ $$0PERI:(DE-600)2975343-0$$a10.3791/67088$$pe67088$$tJoVE journal$$v $$x1940-087X$$y2024
001031670 8767_ $$82024-633$$92024-09-09$$a1200207779$$d2024-10-23$$ePublication charges$$jZahlung erfolgt$$zUSD 1.400
001031670 909CO $$ooai:juser.fz-juelich.de:1031670$$popenCost$$pOpenAPC$$pVDB
001031670 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180657$$aForschungszentrum Jülich$$b0$$kFZJ
001031670 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187436$$aForschungszentrum Jülich$$b1$$kFZJ
001031670 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191152$$aForschungszentrum Jülich$$b2$$kFZJ
001031670 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
001031670 9141_ $$y2024
001031670 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001031670 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJOVE-J VIS EXP : 2019$$d2021-05-04
001031670 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-05-04
001031670 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-05-04
001031670 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-05-04
001031670 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-05-04
001031670 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
001031670 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-05-04
001031670 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-05-04
001031670 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
001031670 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-05-04
001031670 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-05-04
001031670 920__ $$lyes
001031670 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x0
001031670 980__ $$ajournal
001031670 980__ $$aVDB
001031670 980__ $$aI:(DE-Juel1)IBI-7-20200312
001031670 980__ $$aAPC
001031670 980__ $$aUNRESTRICTED
001031670 9801_ $$aAPC