001031768 001__ 1031768
001031768 005__ 20250203133212.0
001031768 0247_ $$2doi$$a10.1002/solr.202400383
001031768 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-05804
001031768 0247_ $$2WOS$$aWOS:001302014000001
001031768 037__ $$aFZJ-2024-05804
001031768 082__ $$a600
001031768 1001_ $$0P:(DE-Juel1)169946$$aDuan, Weiyuan$$b0$$eCorresponding author$$ufzj
001031768 245__ $$aInsights into the Heat‐Assisted Intensive Light‐Soaking Effect on Silicon Heterojunction Solar Cells
001031768 260__ $$aWeinheim$$bWiley-VCH$$c2024
001031768 3367_ $$2DRIVER$$aarticle
001031768 3367_ $$2DataCite$$aOutput Types/Journal article
001031768 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1728881755_31822
001031768 3367_ $$2BibTeX$$aARTICLE
001031768 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001031768 3367_ $$00$$2EndNote$$aJournal Article
001031768 520__ $$aHeat-assisted intensive light soaking has been proposed as an effective posttreatment to further enhance the performance of silicon heterojunction (SHJ) solar cells. In the current study, it is aimed to distinguish the effects of heat and illumination on different (doped and undoped) layers of the SHJ contact stack. It is discovered that both elevated temperature and illumination are necessary to significantly reduce interface recombination when working effectively together. The synergistic effect on passivation displays a thermal activation energy of approximately 0.5 eV. This is likely due to the photogenerated electron/hole pairs in the c–Si wafer, where nearly all of the incident light is absorbed. By distinguishing between the effects of light and heat effects on the conductivity of p- and n-type doped hydrogenated amorphous silicon (a–Si:H) layers, it is demonstrated that only heat is accountable for the observed rise in conductivity. According to numerical device simulations, the significant contribution to the open-circuit voltage enhancement arises from the reduced density of defect states at the c–Si/intrinsic a–Si:H interface. In addition, the evolution of the fill factor is highly dependent on changes in interface defect density and the band tail state density of p-type a–Si:H.
001031768 536__ $$0G:(DE-HGF)POF4-1213$$a1213 - Cell Design and Development (POF4-121)$$cPOF4-121$$fPOF IV$$x0
001031768 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001031768 7001_ $$0P:(DE-Juel1)188102$$aRudolph, Toby$$b1$$ufzj
001031768 7001_ $$0P:(DE-Juel1)179456$$aGebrewold, Habtamu Tsegaye$$b2$$ufzj
001031768 7001_ $$0P:(DE-Juel1)130219$$aBittkau, Karsten$$b3$$ufzj
001031768 7001_ $$0P:(DE-Juel1)130263$$aLambertz, Andreas$$b4$$ufzj
001031768 7001_ $$0P:(DE-Juel1)173822$$aQiu, Depeng$$b5
001031768 7001_ $$0P:(DE-Juel1)190626$$aYaqin, Muhammad Ainul$$b6$$ufzj
001031768 7001_ $$0P:(DE-HGF)0$$aXu, Xixiang$$b7
001031768 7001_ $$0P:(DE-Juel1)130233$$aDing, Kaining$$b8$$eCorresponding author$$ufzj
001031768 7001_ $$0P:(DE-Juel1)130285$$aRau, Uwe$$b9$$eCorresponding author$$ufzj
001031768 773__ $$0PERI:(DE-600)2882014-9$$a10.1002/solr.202400383$$gp. 2400383$$n19$$p2400383$$tSolar RRL$$v8$$x2367-198X$$y2024
001031768 8564_ $$uhttps://juser.fz-juelich.de/record/1031768/files/SolRRL8_2400383_Insights%20into%20the%20Heat%E2%80%90Assisted%20Intensive%20Light%E2%80%90Soaking%20Effect%20on%20Silicon%20Heterojunction%20Solar.pdf$$yOpenAccess
001031768 8564_ $$uhttps://juser.fz-juelich.de/record/1031768/files/SolRRL8_2400383_Insights%20into%20the%20Heat%E2%80%90Assisted%20Intensive%20Light%E2%80%90Soaking%20Effect%20on%20Silicon%20Heterojunction%20Solar.gif?subformat=icon$$xicon$$yOpenAccess
001031768 8564_ $$uhttps://juser.fz-juelich.de/record/1031768/files/SolRRL8_2400383_Insights%20into%20the%20Heat%E2%80%90Assisted%20Intensive%20Light%E2%80%90Soaking%20Effect%20on%20Silicon%20Heterojunction%20Solar.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001031768 8564_ $$uhttps://juser.fz-juelich.de/record/1031768/files/SolRRL8_2400383_Insights%20into%20the%20Heat%E2%80%90Assisted%20Intensive%20Light%E2%80%90Soaking%20Effect%20on%20Silicon%20Heterojunction%20Solar.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001031768 8564_ $$uhttps://juser.fz-juelich.de/record/1031768/files/SolRRL8_2400383_Insights%20into%20the%20Heat%E2%80%90Assisted%20Intensive%20Light%E2%80%90Soaking%20Effect%20on%20Silicon%20Heterojunction%20Solar.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001031768 8767_ $$d2024-10-11$$eHybrid-OA$$jDEAL
001031768 909CO $$ooai:juser.fz-juelich.de:1031768$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
001031768 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169946$$aForschungszentrum Jülich$$b0$$kFZJ
001031768 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188102$$aForschungszentrum Jülich$$b1$$kFZJ
001031768 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179456$$aForschungszentrum Jülich$$b2$$kFZJ
001031768 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130219$$aForschungszentrum Jülich$$b3$$kFZJ
001031768 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130263$$aForschungszentrum Jülich$$b4$$kFZJ
001031768 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190626$$aForschungszentrum Jülich$$b6$$kFZJ
001031768 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130233$$aForschungszentrum Jülich$$b8$$kFZJ
001031768 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130285$$aForschungszentrum Jülich$$b9$$kFZJ
001031768 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1213$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
001031768 9141_ $$y2024
001031768 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001031768 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001031768 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001031768 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019
001031768 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-27
001031768 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001031768 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2023-10-27$$wger
001031768 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-27
001031768 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001031768 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOL RRL : 2022$$d2024-12-09
001031768 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-09
001031768 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-09
001031768 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-09
001031768 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-09
001031768 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-09
001031768 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-09
001031768 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bSOL RRL : 2022$$d2024-12-09
001031768 920__ $$lyes
001031768 9201_ $$0I:(DE-Juel1)IMD-3-20101013$$kIMD-3$$lPhotovoltaik$$x0
001031768 980__ $$ajournal
001031768 980__ $$aVDB
001031768 980__ $$aUNRESTRICTED
001031768 980__ $$aI:(DE-Juel1)IMD-3-20101013
001031768 980__ $$aAPC
001031768 9801_ $$aAPC
001031768 9801_ $$aFullTexts