001     1031780
005     20241011205301.0
037 _ _ |a FZJ-2024-05807
100 1 _ |a Singh, Ankita
|0 P:(DE-Juel1)203530
|b 0
|u fzj
111 2 _ |a JCNS Workshop 2024, Trends and Perspectives in Neutron Scattering: Functional Interfaces
|c Evangelische Akademie Tutzing
|d 2024-10-08 - 2024-10-11
|w Germany
245 _ _ |a Investigation on the presence of magnetic skyrmions in SrIrO3/SrRuO3bilayer Interface on SrTiO3
260 _ _ |c 2024
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1728643196_2876
|2 PUB:(DE-HGF)
|x Invited
520 _ _ |a Topological magnetic textures, known as magnetic skyrmions, hold significant promise for applicationsas nanoscale information components in logic and memory devices. These quasiparticles,characterized by their swirling spin configurations, exhibit unique advantages due to their stability,diminutive size, and the low current densities required for manipulation [1]. In transition metal oxides,electronic correlations between 4d and 5d oxides in bilayer forms induce strong spin-orbit coupling(SOC), facilitating the formation of magnetic skyrmions on the surface of SrRuO3 (SRO). Stacksof SrRuO3/SrIrO3 (SIO) epitaxial layers integrate essential elements such as the Dzyaloshinskii-Moriya interaction (DMI), large perpendicular magnetic anisotropy (PMA), and spin-orbit torques(SOT) to stabilize magnetic skyrmions and enable their efficient current-driven motion. Bilayers ofSRO/SIO are grown on TiO2 terminated SrTiO3 (STO) (001) substrates, where the growth of SRO isachieved via High Oxygen Pressure Sputtering (HOPS) and SIO via Molecular Beam Epitaxy (MBE).Precise control of film thickness is crucial to maintain the intrinsic properties of both materials andobserve magnetic skyrmions. Therefore, we systematically vary the thickness of both the layers tooptimize their magnetic properties, magnetoresistance and the Hall effect that includes ordinary Halleffect (OHE), anomalous Hall effect (AHE), and Topological Hall effect (THE). Given the challengesassociated with directly observing skyrmions directly at the nano-meter scale in the real space, weemploy the topological Hall effect as an indirect method to characterize magnetic skyrmions in ferromagneticthin films[2]. For detailed interfacial and surface studies of the thin films, PolarizedNeutron Reflectometry (PNR) and Grazing Incidence Small Angle Neutron Scattering (GISANS) willbe performed. The expected results will test the hypothesis of the presence of ordered magneticskyrmions and their contribution to the topological Hall effect in the bilayer oxide thin film, potentiallyadvancing our understanding of skyrmion dynamics and their application in spintronicsdevices.[1] N. Nagaosa et. al. Nat. Nanotechnol. 8, 899-911, (2013).[2] Xu Niu et. al. J. Phys.: Condens. Matter 34, 244001, (2022).E-mail of the corresponding author: an.singh@fz-juelich.de
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)
|0 G:(DE-HGF)POF4-6G4
|c POF4-6G4
|f POF IV
|x 1
700 1 _ |a de Oliveira Lima, Vitor Alexandre
|0 P:(DE-Juel1)191333
|b 1
|u fzj
700 1 _ |a Bednarski-Meinke, Connie
|0 P:(DE-Juel1)184662
|b 2
|u fzj
700 1 _ |a Kentzinger, Emmanuel
|0 P:(DE-Juel1)130754
|b 3
|u fzj
909 C O |o oai:juser.fz-juelich.de:1031780
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)203530
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)191333
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)184662
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130754
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G4
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Jülich Centre for Neutron Research (JCNS) (FZJ)
|x 1
914 1 _ |y 2024
920 1 _ |0 I:(DE-Juel1)JCNS-2-20110106
|k JCNS-2
|l Streumethoden
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JCNS-2-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21