001031785 001__ 1031785
001031785 005__ 20241105214339.0
001031785 037__ $$aFZJ-2024-05812
001031785 041__ $$aEnglish
001031785 1001_ $$0P:(DE-Juel1)195833$$aSchutzeichel, Lars$$b0$$eCorresponding author$$ufzj
001031785 1112_ $$aBernstein Conference$$cFrankfurt$$d2024-10-01 - 2024-10-01$$wGermany
001031785 245__ $$aInfluence of Collective Network Dynamics on Stimulus Separation
001031785 260__ $$c2024
001031785 3367_ $$033$$2EndNote$$aConference Paper
001031785 3367_ $$2BibTeX$$aINPROCEEDINGS
001031785 3367_ $$2DRIVER$$aconferenceObject
001031785 3367_ $$2ORCID$$aCONFERENCE_POSTER
001031785 3367_ $$2DataCite$$aOutput Types/Conference Poster
001031785 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1730810833_26268$$xAfter Call
001031785 520__ $$aDifferent stimuli elicit different transient neural responses in the brain. How is the information represented in the parallel neuronal activity of a neuronal population? We investigate this question in Neuropixel recordings of awake behaving mice by inferring the stimulus class (e.g., visual or tactile) from the activity. To quantify the separability, we use an optimally trained linear readout, which can be understood through the framework of Bayesian inference. We find that separability only depends on three geometric properties of the neuronal population vector, described by cones within the space of neuronal activity: The length $R$, the width of the cones $Q^{intra}$, given by the overlap of two vectors within classes, and the distance between two cones $Q^{inter}$, given by the overlap across two classes (A).We then analyze how the dynamics of a recurrent network deforms stimulus representations as a function of time. We employ a two-replica calculation to compute the time-evolutions of $R$, $Q^{intra}$ and $Q^{inter}$ In the limit of large networks, the dynamics of this model are fully described by these three quantities, which are matched to the corresponding experimental observables. The analytical theory, in turn, predicts the separability of the stimuli as a function of time and shows how the time-evolution of separability can be understood by the dynamic interplay between balance by inhibition, which controls the time course of $R$, and chaotic dynamics, which controls $Q^{intra}$ and $Q^{inter}$. Neither the decay of the firing rate alone nor that of the overlaps is predictive for separability, but rather their mutual relationships. For stimuli with reliable responses, the network can transiently increase the separability, as previously only seen for a constant population mean [1].To further probe the network's capacity for separation, we use mutual information to quantify the information contained in the population signal as a function of the number of stimuli. This reveals an optimal number of stimuli from the trade-off between encoding more information with more stimuli, and stimuli becoming less separable due to their increased overlap in neuron space (B). We show that the optimum depends on the population mean, allowing for the embedding of more stimuli for a smaller population mean.
001031785 536__ $$0G:(DE-HGF)POF4-5231$$a5231 - Neuroscientific Foundations (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001031785 536__ $$0G:(DE-HGF)POF4-5232$$a5232 - Computational Principles (POF4-523)$$cPOF4-523$$fPOF IV$$x1
001031785 536__ $$0G:(GEPRIS)368482240$$aGRK 2416 - GRK 2416: MultiSenses-MultiScales: Neue Ansätze zur Aufklärung neuronaler multisensorischer Integration (368482240)$$c368482240$$x2
001031785 536__ $$0G:(GEPRIS)533396241$$aDFG project G:(GEPRIS)533396241 - Evolutionäre Optimierung neuronaler Netzwerkdynamik auf eine empfängerspezifische interareale Kommunikation (533396241)$$c533396241$$x3
001031785 7001_ $$0P:(DE-HGF)0$$aBauer, Jan$$b1
001031785 7001_ $$0P:(DE-Juel1)178725$$aBouss, Peter$$b2$$ufzj
001031785 7001_ $$0P:(DE-Juel1)175146$$aMusall, Simon$$b3$$ufzj
001031785 7001_ $$0P:(DE-Juel1)156459$$aDahmen, David$$b4$$ufzj
001031785 7001_ $$0P:(DE-Juel1)144806$$aHelias, Moritz$$b5$$ufzj
001031785 8564_ $$uhttp://doi.org/10.12751/nncn.bc2024.225
001031785 909CO $$ooai:juser.fz-juelich.de:1031785$$pVDB
001031785 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)195833$$aForschungszentrum Jülich$$b0$$kFZJ
001031785 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178725$$aForschungszentrum Jülich$$b2$$kFZJ
001031785 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)175146$$aForschungszentrum Jülich$$b3$$kFZJ
001031785 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156459$$aForschungszentrum Jülich$$b4$$kFZJ
001031785 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144806$$aForschungszentrum Jülich$$b5$$kFZJ
001031785 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5231$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001031785 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5232$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x1
001031785 9141_ $$y2024
001031785 9201_ $$0I:(DE-Juel1)IBI-3-20200312$$kIBI-3$$lBioelektronik$$x0
001031785 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lComputational and Systems Neuroscience$$x1
001031785 980__ $$aposter
001031785 980__ $$aVDB
001031785 980__ $$aI:(DE-Juel1)IBI-3-20200312
001031785 980__ $$aI:(DE-Juel1)IAS-6-20130828
001031785 980__ $$aUNRESTRICTED