
979-8-3503-5616-8/24/$31.00 © 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
DOI 10.1109/SBAC-PAD63648.2024.00023

Analyzing HPC Monitoring Data With a View
Towards Efficient Resource Utilization

Samuel Maloney∗, Estela Suarez∗†, Norbert Eicker∗‡, Filipe Guimarães∗, Wolfgang Frings∗
∗Jülich Supercomputing Centre, Forschungszentrum Jülich, Germany

†Institute of Computer Science, University of Bonn, Germany
‡School of Mathematics and Natural Sciences, University of Wuppertal, Germany
Emails: {s.maloney},{e.suarez},{n.eicker},{f.guimaraes},{w.frings}@fz-juelich.de

Abstract—Compute nodes in modern HPC systems are growing
in size and their hardware has become ever more diverse. Still,
many HPC centers allocate the resources of full nodes exclusively
to avoid contention, despite the associated risk of underutilization.
This paper describes a thorough resource utilization study of
CPU and GPU compute and memory capacity, and interconnect
bandwidth on JUWELS, a mature leadership-class modular
supercomputer, with the aim of identifying opportunities for
improving utilization through advanced scheduling and node
sharing. Separate analysis of CPU-only and GPU-accelerated
nodes finds that CPU compute usage is already close to optimal
for the CPU-only nodes, whereas there is plenty of scope for co-
scheduling CPU-based jobs on GPU-accelerated nodes. Memory
capacity and node-level interconnect bandwidth are sufficient
to provision co-scheduled jobs. We analyze multiple one-month
datasets to validate robustness of conclusions over time and
compare with previous studies on other systems to establish
generalizability of results.

Index Terms—High performance computing (HPC), Resource
management, Monitoring, Dynamic/Adaptive scheduling, Predic-
tive analytics

I . INTRODUCTION

In the pursuit of ever more computational power and—
perhaps more so in the future—energy-efficiency, the compute
nodes in modern high performance computing (HPC) systems
are growing in size and their hardware has become ever more
diverse, with nine of the top ten systems on the November
2023 TOP500 list now being GPU-accelerated [2]. However,
this heterogeneity presents challenges for both application
developers as well as system administrators in how to ensure
efficient utilization of the various resources in the nodes.

Many HPC centers allocate the resources of full nodes
exclusively, while codes are likely to bottleneck on only one (or
a small subset) of the available devices, leaving the remaining
underutilized. Co-scheduling of jobs (a.k.a. colocating or node
sharing) is one potential option to improve overall utilization
by concurrently running jobs with complementary resource

This work has received funding from the European Commission’s H2020,
and EuroHPC Programmes, under Grant Agreement number 955606 (DEEP-
SEA). The EuroHPC Joint Undertaking (JU) receives support from the
European Union’s Horizon 2020 research and innovation programme and
Germany, France, Spain, Greece, Belgium, Sweden and Switzerland. The
authors gratefully acknowledge the Gauss Centre for Supercomputing e.V.
(www.gauss-centre.eu) for funding this project by providing computing time
through the John von Neumann Institute for Computing (NIC) on the GCS
Supercomputer JUWELS [1] at Jülich Supercomputing Centre (JSC).

needs on the same nodes. Nonetheless, it is often not used by
default because of the risk for severe performance degradation
due to contention when jobs with overlapping requirements end
up co-scheduled and competing for the already bottlenecked
shared resource. Mitigating this risk requires careful monitoring,
making robust implementation much more difficult.

The primary contributions of this paper are
• a thorough study of resource utilization of CPU and

GPU compute and memory capacity, and interconnect
bandwidth on JUWELS, a mature leadership-class modular
supercomputer;

• identification of opportunities for improving utilization
through node sharing, as well as which resources are
already well-used;

• analysis of multiple one-month datasets to validate robust-
ness of conclusions over time;

• comparison with previous studies on other systems to
establish generalizability of results;

• release of the anonymized operational data and scripts
used for the analysis.

A. Related works

A number of prior studies have looked into resource
utilization of HPC systems [3]–[9]. Browne et al. [3] introduced
an open source HPC monitoring system, Gómez-Iglesias et
al. [4] presented a tool for user-level monitoring of individual
applications, Nikitenko et al. [5] explored on-the-fly analysis
and making monitoring data available to users, Wang et al. [6]
gave a high-level summary of five years of usage data from
the Titan system, and Netti et al. [7] discussed an operational
data analytics framework for use in HPC facilities.

Several others focus more narrowly on memory utiliza-
tion [10]–[13]. Turner and McIntosh-Smith [10] determined
memory requirements of applications on ARCHER, Zivanovic
et al. [11] analyzed the memory footprints of several HPC
benchmarks and production applications, and Panwar et al. [12]
quantified memory underutilization and propose new microar-
chitecture techniques for leveraging the unused capacity.

We build particularly on the works of Peng et al. [13], who
investigated memory usage of the Lassen and Quartz systems;
Michelogiannakis et al. [8], who looked into the potential for
disaggregation in the Cori system; and Lie et al. [9], who
characterized the Perlmutter system [14].

www.gauss-centre.eu

TABLE I
JUWELS MODULE CONFIGURATIONS

Cluster (standard CPU nodes) Booster

CPU-only 4×NVIDIA A100, 40 GiB HBM2
2× Intel Xeon Platinum 8168 2×AMD EPYC 7402
96 GiB DDR4 512 GiB DDR4 (host)
2271 nodes 936 nodes
279 nodes per cell 48 nodes per cell
InfiniBand EDR fat tree InfiniBand HDR Dragonfly+

Both have 48 physical / 96 logical cores per node

Disaggregation of resources, particularly memory, shows
great promise for reducing underutilization [8], [15]–[22];
however, in general it requires specialized hardware or even
photonics to mitigate additional latency [15], or changes in
user code to effect an implementation in software [21]. This
work therefore focuses on the potential improvements using
existing hardware via (dynamic) co-scheduling of applications
with complementary resource utilization profiles.

Co-scheduling has been studied in various contexts [23]–
[31]. Blagodurov and Fedorova [23] used on-the-fly process
migration for contention-aware scheduling, Galleguillos et
al. [24] developed a data-driven approach for job duration
prediction for dispatching methods, Netti et al. [25] proposed
new heterogeneity-aware resource allocation algorithms, Xiong
et al. [26] explored colocating with oversubscription to increase
overall throughput, Goponenko et al. [28] integrated monitoring
data with Slurm for I/O-aware scheduling, Zacarias et al. [27],
[29] used machine learning to select applications for colocation
which minimize performance degradation, Tzenetopoulos et
al. [30] developed an interference-aware scheduler with Kuber-
netes, and Xue et al. [31] investigated the effect of split locks
on virtual machine (VM) placement.

Particular attention has been paid to contention for memory
bandwidth [32]–[36]. Zhuravlev et al. [32] looked into thread
scheduling for reducing contention, Xu et al. [33] proposed
minimizing memory bandwidth contention by maintaining
an average utilization target, Breslow et al. [34] studied job-
striping of HPC workloads, Dauwe et al. [35] examined energy
use when using neural networks to predict contention, and
Kuity and Peddoju [36] proposed a model for data locality and
memory bandwidth contention-aware container placement.

The current work adds to the above body of research,
studying the utilization of resources in the production HPC
system JUWELS, for which such results have never been
published before. We analyze its operational data for potential
to improve resource utilization through advanced scheduling
techniques. In doing so we combine some of the approaches
used independently in previous publications: job monitoring,
data analytics of operational data, and scheduling policies.

B. System configurations

All data have been collected from JUWELS [1], [37], the
Tier-0 HPC supercomputer housed at Forschungszentrum Jülich

Cluster Booster

Basic Biological and Medical Research5 % 3 %

Neurosciences
3 %

Chemical Solid State
and Surface Research

Condensed Matter Physics

10 %
6 %

Optics, Quantum Optics and Physics
of Atoms, Molecules and Plasmas

5 %

Particles, Nuclei and Fields

17 % 29 %

Statistical Physics, Soft Matter, Biological
Physics, Nonlinear Dynamics

9 %

6 %Astrophysics and Astronomy

9 % 4 %Atmospheric Science, Oceanography
and Climate Research

25 %

12 %Geophysics and Geodesy

3 %

Geochemistry, Mineralogy
and Crystallography

Water Research

Mechanics and Constructive
Mechanical Engineering

Heat Energy Technology, Thermal
Machines, Fluid Mechanics

10 %

9 %

Computer Science (including AI)

22 %

Other (individual shares < 0.5%)2 %

Fig. 1. JUWELS computing time allocations by research area, as of November
2023. Figure only includes categories with shares ≥ 0.5% of total, and specific
share amounts are only labeled for values ≥ 2%. Other research areas with
shares < 0.5% on both modules include: Medicine; Agriculture, Forestry
and Veterinary Medicine; Molecular Chemistry; Mathematics; Materials
Engineering; Systems Engineering; and Electrical Engineering and Information
Technology. For the Cluster, only allocations for standard (i.e., not GPU-
accelerated) nodes are included, to better match with our datasets. The same
allocations are in effect for both November and January datasets (see section II).

(FZJ) in Germany. The configuration of JUWELS is based on
the modular supercomputing architecture (MSA) [38]–[41]
comprising two separate but closely interconnected modules
referred to as the Cluster and Booster [42]–[44]. A brief
overview of the salient hardware details of the two modules is
given in table I and elucidated further below.

Users from many scientific domains run computations on
JUWELS, so Fig. 1 gives an overview of the computing time
shares allocated on JUWELS as of November 2023, broken
down by research area. Approved allocations start on the first
of May and November each year, so all of our data (discussed
further in the next section) originate from the same allocation
period illustrated in the figure.

The Booster module contains only GPU-accelerated compute
nodes, of which there are 936, organized into 39 racks of 24
nodes, with 2 tightly coupled racks forming an InfiniBand cell
within the Dragonfly+ topology, which is the basic building
block of the network. Every node is equipped with four
NVIDIA A100 GPUs, with each GPU having 40 GiB of HBM2
memory and a dedicated 200 Gbit/s InfiniBand NDR200 HCA.
Every node also has two AMD EPYC Rome 7402 CPUs, which
share 512 GiB of host DDR4.

The Cluster module has a more heterogeneous node con-
figuration, with a primary set of 2271 CPU-only standard
compute nodes supplemented by smaller sets of 240 large-
memory nodes (also CPU-only), 56 GPU-accelerated nodes,
and four visualization nodes. To keep the analysis more easily
interpretable we restrict our dataset to just the standard compute
nodes, which are each equipped with two Intel Xeon Platinum
8168 CPUs sharing 96 GiB of DDR4. Nodes on the Cluster
are organized into cells comprised of three physical racks (two
racks for compute and one rack for the associated network
switches) with each cell having 279 nodes.

Both CPU types have 24 physical cores per socket, with
Intel Hyper-Threading (HT) Technology or AMD Simultaneous
Multithreading (SMT) enabled, as applicable. This gives a total
count of either 48 physical or 96 logical cores per node on
both modules. Resource allocation and scheduling is performed
by the Slurm workload manager [45]–[47] (version 22.05.9
at time of writing) and node sharing is not currently used on
either module, so jobs have exclusive access to all resources
on the nodes in their allocation.

We note that throughout this paper we may refer inter-
changeably to jobs running on the Cluster module as “CPU” or
“CPU-only” and jobs running on the Booster module as “GPU”
or “GPU-accelerated”, regardless of actual GPU utilization.

II . DATA COLLECTION

Job monitoring information for JUWELS is collected
and managed by a reporting and visualization tool called
LLview [48], [49], developed in-house at FZJ. LLview is
formed from a collection of software that oversees the
acquisition of hardware status and usage data from the
various components of each system at FZJ, and relies on the
system monitoring stack deployed by the operations team. The
monitoring stack primarily uses Prometheus [50] for collecting
hardware metrics on compute nodes and IBMS (a fabric
monitoring system tool by Eviden) for InfiniBand monitoring.
LLview collates the different monitoring data and maps it
to job submission and scheduling data from Slurm, and then
provides a web interface for users and system administrators
to view and explore the data in detailed interactive reports.

Most of the data are sampled by LLview at one minute
intervals, on average, and are available in the live web portal
for three weeks before being archived. This sampling interval
does mean that very short transient features of the time series
may be missed or averaged out, but it still provides plenty
of data for many system-level statistical analyses, especially
considering the small overall contribution made by very short
jobs with few data points, as noted in section II-A.

Data for the GPUs (compute and HBM2 utilization and
power draw) are collected using the NVIDIA Management
Library (NVML) [51], which is queried every minute by a
daemon developed in-house. Data for CPU compute and host
DDR4 utilization are collected from Slurm as the average over
the preceding minute.

There are two primary datasets presented in our analysis,
consisting of all jobs that ended during either November 2023 or

January 2024, respectively.1 Jobs that were explicitly submitted
to ‘development’ queues are excluded in order to focus on
production workloads. The November dataset contains 39 858
and 47 332 jobs on the Cluster and Booster, respectively, while
for the January dataset there are 73 335 and 46 837.

Maximum and average resource utilization for a job are
defined by applying the respective aggregation function over
both the time series for each node and over the nodes allocated
to a given job; for the GPU-specific data, the aggregation is
instead over both the time series for each individual GPU and
over all the GPUs allocated to a given job.

Analysis of the data was carried out in Python using the
pandas module [52], [53]. In order to gain useful insights
from the large volume of data, our primary tool is the cumula-
tive distribution function (CDF), which gives the cumulative
percentage of jobs—either by count, node-hours, or GPU-
hours; as indicated in individual figures—for which the quantity
of interest is ≤ x. CDFs using node-hours/GPU-hours are
particularly useful for high-level resource utilization analysis
because the plot area then represents the total resource-hours
available in the given time period, and the areas above and
below the CDF curve provide insight into the utilized and idle
fraction of said resource-hours, respectively.

A. Job Durations

Fig. 2 shows a full breakdown of the distribution of jobs
by runtime, with CDFs for both the number of jobs by count
(dotted lines) and weighted by node-hours (solid lines).

On both modules a majority of jobs by count are short (< 1 h)
but this group represents only a small fraction (~5 %) of system
node-hours. Such short jobs are often assumed to be mainly
test jobs (such as parameter scans), debugging jobs, or failed
jobs, and therefore not indicative of real system usage. As such,
some studies exclude short jobs from their analysis, but we
have elected to retain them in this study for two main reasons:
firstly, the choice of cut-off runtime is effectively arbitrary
(e.g., Peng et al. [13], Lie et al. [9], and Michelogiannakis et
al. [8] all use different thresholds of one minute, one hour, and
two hours, respectively); and secondly, the small contribution
of node-hours for short jobs means that simply weighting the
analyses by node-hours organically reflects the true system
impact of jobs of all durations in any case.

Both modules have a maximum wall clock time of 24 hours,
and there is a noticeable grouping of 10-20 % of the node-hours
near this upper bound for both modules. On the Cluster, the
distribution of runtimes is otherwise quite even throughout the
entire range, while on the Booster a distinct kink in the plotted
CDFs of Fig. 2 can be seen at the six hour mark. This is likely
a result of policy, where a shorter wall clock time limit of six
hours is enforced for projects that have already exhausted their
allocated quota for a given month. Users belonging to such
projects may still submit jobs, but they are scheduled with

1Subsets of data from other time periods were also explored in the process
of developing the current study, with similar statistical trends being observed,
but only results from the two main datasets are presented, as they are the only
ones with complete data for all resources studied.

0 4 8 12 16 20 24

0%

20%

40%

60%

80%

100%
Jo

bs

75%

1

5%

Cluster (CPU-only jobs)

0 4 8 12 16 20 24

53%

1

5%
6

Booster (GPU-accelerated jobs)

Job Duration (h)

Nov ’23
Jan ’24

node-hours
count

Fig. 2. Cumulative distribution functions of job runtimes, both by count and weighted by node-hours. Annotated values are computed from the average of the
November and January datasets. Majority of jobs by count are short (< 1 h) but this group represents only a small fraction of system node-hours. 24 h is the
normal wall clock time limit on both modules, while 6 h is the wall clock time limit for projects that have already exhausted their allocated quota, with a
visible kink at 6 h in the Booster data.

lower priority and are subject to the shorter time limit. That
this kink appears only for the Booster would suggest that there
may exist more projects on the Booster that are consuming
more compute resources than were allocated to them.

B. Job Sizes

Fig. 3 gives a breakdown by the number of nodes requested
per job. Approximately 50–60 % of jobs by count on both
modules only request a single node, but even these small jobs
contribute non-negligibly to the system node-hours, particularly
on the Booster, with 6 % and 20 % of Cluster and Booster node-
hours respectively coming from single node jobs.

Compared to Li et al. [9] we see fewer single node jobs, with
49 % and 57 % of CPU and GPU jobs, respectively, compared
with their 68 % and 66 %. Some of this difference may be
workload differences and statistical noise (particularly for GPU
jobs the difference is not so significant), but there could also be
an effect from our dataset being collected later in the life cycle
of JUWELS. The Cluster was deployed in the summer of 2018
and the Booster in November 2020, giving 3–5.5 years between
deployment and collection of our datasets, vs. only 1–1.5 years
between Perlmutter’s phased deployment in 2021/2022 [14]
and the dataset used by Li et al. [9], collected November 1 to
December 1, 2022. This may have given more time for users
to scale up from single node development and testing.

Additionally, >99 % of CPU jobs by count (>74 % by node-
hours) would fit within the 279 nodes of a single cell on the
Cluster, while on the Booster, >98 % of jobs by count (>75 %
by node-hours) would fit within the 48 nodes of a single cell.
This is similar to the results of Li et al. [9] where they observed
that >99.6 % of both CPU and GPU jobs would fit within the
256 or 128 nodes of a single rack of the respective Perlmutter
partitions. However, while they did not indicate the node-hour
contribution of the remaining large jobs, we note that for our
datasets these multi-cell jobs still contribute up to 25 % of the
node-hours. This is useful knowledge for scheduling the nodes

of a job close to each other within the network topology, as well
as for potential future resource disaggregation strategies, where
pooling at sub-system rack/cell levels has been mooted [8].

Conversely, very few jobs request truly large node counts
occupying a significant fraction of the full modules. We note
that there are also possible scheduling policy effects at play
here, namely, if users wish to run particularly large or full-
module scale jobs (>1024 nodes on the Cluster or >384 nodes
on the Booster) they must submit to special queues that only
run in designated time slots coordinated with the user support
team. Therefore, the presence or absence of such large jobs in
the data could vary greatly depending on such arrangements
being made during a given period of time. Although rare, such
large jobs can obviously still contribute significant node hours,
as indicated by the visible steps in the node-hour CDFs at high
node counts of Fig. 3, despite the almost imperceptible change
in the accompanying count CDFs.

III . RESOURCE UTILIZATION

A. Main Memory on the CPU

In the spirit of Li et al. [9] and Peng et al. [13] we briefly
characterize the jobs by their maximum CPU DDR4 utilization,
as shown in Fig. 4. Those studies labeled their categories as
low (≤25 %), medium (25–50 %), and high (>50 %) intensity.
We have made one further division, such that we rather have
very low (≤12.5 %), and low (12.5–25 %). We did this both
to provide a bit more of a breakdown, but also because the
Booster nodes have twice as much DDR4 as Perlmutter’s GPU
nodes, which means that in terms of actual memory values for
GPU jobs, our very low category now corresponds directly to
Li et al. [9]’s low category, our low with their medium, and our
medium with their high.2 All thresholds are determined from

2On the other hand, Perlmutter’s CPU nodes have more than four times as
much DDR4 as the Cluster nodes, so all our categories would fall below their
low threshold.

1 4 16 64 279 1024 2271
0%

20%

40%

60%

80%

100%
Jo

bs

cell

75%

Cluster (CPU-only jobs)

1 4 16 48 384 936

cell

76%

Booster (GPU-accelerated jobs)

Number of Nodes

Nov ’23
Jan ’24

node-hours
count

Fig. 3. Cumulative distribution functions of jobs sizes (i.e., number of allocated nodes per job), both by count and weighted by node-hours. N.B. log-scale on
the x-axis. For the Cluster, 279 is the number of nodes per cell, while the Booster has 48 nodes per cell. Annotated values are indicated for the minimum of
the November and January datasets.

0% 20% 40% 60% 80% 100%

no
de

-h
ou

rs
co

un
ts

2

39

22

21

35

30

42

10

Cluster (CPU-only jobs)

6 12

(12, 24]

(24, 48]

> 48

0% 20% 40% 60% 80% 100%

22

53

25

23

29

16

24

8

Booster (GPU-accelerated jobs)

6 64

(64, 128]

(128, 256]

> 256

Percentage of Jobs by Count and Node-hours

Fig. 4. Percentage of jobs by count and node-hours with maximum CPU memory utilization in the given ranges (in GiB). Jobs with high maximum CPU
memory utilization tend to consume more node-hours. Data from both November and January datasets were combined to create this figure, although we note
that the general trends are similar when they are plotted separately (not shown). Labeled percentages may not sum to 100 due to rounding.

the nominal DDR4 capacities for simplicity, and the specific
values are given in the figure legend.

A similar result is seen as in Li et al. [9] and Peng et al. [13],
where jobs with medium and high maximum memory intensity
on both modules account for a greater fraction of node-hours
than jobs by count. This indicates that jobs that reach a greater
peak memory footprint are also more likely to run for a longer
time and/or occupy a greater number of nodes.

For more granularity, Fig. 5 shows full CDFs of the CPU
DDR4 usage per job, weighted by node-hours. The OS and
other services running on the compute nodes invariably occupy
some memory, with GPFS (General Parallel File System) in
particular consuming several GiB, but we are only interested
in the utilization rate for the remaining memory, i.e., that
which is actually available to the application. Therefore, 100 %
utilization is normalized to be the maximum value in the
datasets for each module, as a more representative upper limit
than simply the nominal hardware value. This assumption was

manually validated by checking the logs for such jobs and
noting that they showed “out-of-memory” errors, indicating
that they had truly reached 100 % of the available DDR4. For
reference, the actual maximum values observed were 90.84 GiB
and 492.69 GiB on the Cluster and Booster, respectively,
compared with the nominal values of 96 GiB and 512 GiB.

A majority of node-hours on both modules (~55 % on the
Cluster and ~75 % on the Booster, averaged over both datasets)
are accounted for by jobs that never consume more than 50 %
of the DDR4 available to them. The CDFs for both modules
have an initial flat section at the very lowest utilization levels,
indicative of the background/OS memory usage setting a lower
limit on the memory utilization seen in the dataset. For both
datasets on the Cluster and the January dataset for the Booster,
the CDF increases relatively consistently across the remaining
range, while for the November dataset on the Booster a distinct
plateau is seen, with the CDF becoming nearly flat between
60–80 % utilization. This might suggest that while memory is

0% 20% 40% 60% 80% 100%
0%

20%

40%

60%

80%

100%
N

od
e-

ho
ur

s

55%

50%

53%
of area

Cluster (CPU-only jobs)

0% 20% 40% 60% 80% 100%

75%

50%

61%
of area

Booster (GPU-accelerated jobs)

CPU DDR4 Utilization

Nov ’23
Jan ’24

max
avg

Fig. 5. Cumulative distribution functions of maximum and average CPU memory utilization per job, weighted by node-hours. 100 % utilization corresponds to
90.84 GiB on the Cluster and 492.69 GiB on the Booster. Annotated values in purple are computed from the average of the November and January datasets and
the green area is bounded by the lowest CDF. Majority use less than 50 % capacity at maximum, and over half of all memory-hours are idle.

over-provisioned for almost three quarters of the node-hours in
November, the remaining quarter form a distinct class of jobs
that use most, if not all, of the the DDR4 available to them.

As mentioned in section II, the area of the plots represents
the total system resource-hours available in the given time
period, and so from a scheduling perspective, the area under
the maximum CDF curves represents the fraction of the idle
resource-hours that could be reclaimed given a perfect static
allocation. What we mean by this is an allocation that is fixed
over the runtime of a job, but is exactly large enough to meet
the peak resource requirement of said job. Conversely, the area
under the average CDF curves would represent the fraction of
the idle resource-hours that could be reclaimed with a perfect
dynamic allocation that changes to exactly match the resource
requirements of the job at all points in its runtime.

Given that, one can then view the area between the maximum
and average CDFs as an upper bound on the additional
improvements achievable by considering dynamic vs. static
allocations. Since the area below the maximum CDFs is
significantly larger than the area between the maximum and
average curves, it is clear that the bulk of theoretically possible
improvements come from optimizing static allocations to better
reflect peak demands. This still requires predicting what the
maximum utilization for each job will be, an already non-trivial
problem, but implies that the much harder problem of predicting
the temporal evolution of each job’s resource utilization to better
match a dynamic allocation would only allow for marginal
possible improvements over the static problem.

For both modules over 50 % of the plot area is below the
curves, indicating substantial unused memory capacity for co-
scheduling of jobs. However, we note that memory bandwidth
is also an important potential source of contention, which we
unfortunately do not have data for in this study.3 Thus, one

3Hardware counters for directly measuring memory bandwidth utilization
are not available, and a proxy such as last-level cache misses is not currently
collected, although we are investigating possibilities for future studies/systems.

should implement a means to measure bandwidth usage and/or
monitor carefully for performance degradation of co-scheduled
jobs to determine those with individually high bandwidth usage.
One possibility on modern architectures would be isolating jobs
on separate NUMA (non-uniform memory access) domains
and restricting their access to only domain-local memory,
which should mitigate or even eliminate the risk of contention
depending on the specific split of resources.

We note that certain comparisons between the datasets, such
as the Kolmogorov–Smirnov test, are not particularly useful in
this study because they are too sensitive to specific differences
like the separations near 50 % in the Cluster CDFs or near 80 %
in the Booster CDFs. In our case, the main conclusions stem
directly from the plot areas and do not require the underlying
distributions to be identical. The areas both under the maximum
CDFs and between the average and maximum CDFs differ
by at most 3 % between the datasets on both modules, with
similar agreement for CPU utilization in the next section.

B. CPU Compute

Fig. 6 gives the CDFs of the CPU compute utilization
weighted by node-hours. With HT/SMT enabled on both
modules, 50 % on the x-axis implies only physical cores being
used, while 100 % would indicate all physical and logical cores
used at full capacity. On both modules we observe very few
node-hours actually using HT/SMT, with only ~12 % of CPU
and ~3 % of GPU node-hours reaching significantly above 50 %
utilization.4

The large ~68 % step in the node-hours near 50 % utilization
on the Cluster indicates over two-thirds of the jobs sitting right
at this one-thread-per-core operating point. There is also a
smaller step of ~9 % of the node-hours near 25 % utilization,

4 We manually choose a threshold just above 50 % by inspection as shown
in Fig. 6 because background/OS processes result in usage slightly above
50 % even for jobs that target only the full complement of physical cores. For
automated thresholding, 60 % would seem a reasonable compromise between
capturing the top of the step but still avoiding much additional increase.

0% 20% 40% 60% 80% 100%
0%

20%

40%

60%

80%

100%
N

od
e-

ho
ur

s

57%

88%

7% of
area < 50%

Cluster (CPU-only jobs)

0% 20% 40% 60% 80% 100%

20%

79%

52%

97%

64% of
area < 50%

Booster (GPU-accelerated jobs)

CPU Utilization

Nov ’23
Jan ’24

max
avg

Fig. 6. Cumulative distribution functions of maximum and average CPU compute utilization per job, weighted by node-hours. 50 % implies all physical but no
logical cores being used, while 100 % implies all physical and logical cores at full capacity. Annotated values in purple are computed from the average of the
November and January datasets with the exact threshold for the top of the steps near 50 % chosen by visual inspection, see footnote 4. The green area is
bounded above by the lowest CDF. Clear spikes around 50 % for both, and generally low utilization on Booster, where the CPUs primarily support the GPUs.

which could indicate particularly memory bound jobs for which
only using half of the physically available cores provides an
even better balance of compute to memory bandwidth, or where
a smaller core count improves cache reuse.

From a scheduling perspective, the Cluster shows little room
for potential improvement. While technically there is a large
total area under the curves in the left plot of Fig. 6, in reality
one would assume that codes running only on the physical
cores are doing so because they are already bound by memory
bandwidth, and so co-scheduling other jobs would almost
certainly lead to contention (with the jobs near 25 % likely
even more sensitive to contention from extra threads).

Given that a “perfect” utilization scenario would present
as a CDF running flat along the bottom of the plot and then
turning 90°upwards at the desired utilization, the sharp corners
in the Cluster CDFs occurring at sensible operating points are
about as close to optimal as one could realistically hope for.
The average and maximum CDFs are also very close together,
indicating little temporal variation in CPU utilization to exploit
over the bulk of the node-hours.

In contrast, on the Booster almost 80 % of the node-hours
reach maximally 20 % CPU utilization, demonstrating the
merely supporting role played by the CPU on the GPU-
accelerated nodes. LLview also computes a metric for the
number of cores that are “in use” on a node, reported as a
binary state for each individual core that is defined to be true
iff its usage was above 25 % over the preceding minute. For
the Booster, the median number of cores “in use” across both
datasets is 4.2 per node (weighted by node-hours) indicative of
the common use case where a single CPU thread is launched
per GPU to coordinate computations.

Also of note is a small but clear step of ~10 % of the node-
hours in both the average and maximum CDFs of the November
dataset for the Booster near 50 % utilization. This indicates a
class of jobs making full usage of the physical cores on this
module, not just using the CPU as support for the GPU but

actually performing sustained computations on the host.
With most of the plot area for the Booster under the CDFs

(even considering only the left half of the plot below the
50 % utilization threshold) there is considerable room for co-
scheduling of CPU consuming jobs on the Booster, especially
in combination with the available DDR4 capacity seen in the
previous section. Lack of memory bandwidth data would again
be the major potential caveat, but for jobs that are well-adapted
to offload the bulk of their workload to the GPUs, co-scheduling
with CPU-only jobs should be a very tenable option.

Comparing with Li et al. [9], we observe similar overall
conclusions, but a couple of differences stand out. They
observed more CPU node-hours using SMT than we did (>20 %
with >95 % utilization compared to our ~9 %). They also
observed significantly more CPU intensive jobs on their GPU-
accelerated nodes than we did, with >30 % reaching >55 %
utilization on Perlmutter compared to our ~3 %. This could
perhaps be due to the JUWELS system being in operation for
a longer time, with users better off-loading the computational
work to the GPU accelerators.

C. GPU Utilization

GPU compute utilization is reported by NVML as the
“percent of time over the past sample period during which
one or more kernels was executing on the GPU.” [51] This
does limit the utility of this measure for determining how
efficiently a given GPU is being used, but does still allow one
to glean whether at least some computation is being executed
on a given GPU. For this reason (and to facilitate comparison
with the results from Li et al. [9]) we report in Fig. 7 the
utilization of the compute and HBM2 memory resources per
GPU for each job, rather than per node, and weighted by the
runtime to give GPU-hours rather than node-hours.

Similar to Li et al. [9], we see a small portion (~8 %) of the
GPU-hours recording no kernels whatsoever executing during
the job runtime. This is slightly less than the ~15 % of fully

0% 20% 40% 60% 80% 100%
GPU Compute Utilization

0%

20%

40%

60%

80%

100%

G
PU

-h
ou

rs

95%

66%

40%

fully idle

15 %
8 %

0% 20% 40% 60% 80% 100%
GPU HBM2 Utilization

25%

29%

50%

44%

Nov ’23
Jan ’24

max
avg

Fig. 7. Cumulative distribution functions of maximum and average GPU compute and memory utilization per GPU per job, weighted by GPU-hours. Annotated
values in purple in left plot indicate the individual CDF values and in the right plot are computed from the average of the November and January datasets.
Compute utilization is quite high, but it should be noted that utilization is measured as the “percent of time over the past sample period during which one or
more kernels was executing on the GPU.” [51]

idle GPU-hours reported by Li et al. [9], although if we include
the entire grouping of GPUs with <10 % utilization seen in the
November dataset of Fig. 7, then our value becomes also ~15 %
for November. The higher percentage of fully idle GPU-hours
seen in the November dataset compared to January could be
related to the observation in the previous section of a set of
jobs heavily using the CPU in the November dataset that was
not observed in January. We also hypothesize that some fully
idle GPUs likely result from allocating full nodes, even though
a given job may not be configured to use all 4 GPUs.

In general, the GPU resource curves exhibit a high degree of
variation between the November and January datasets compared
to the other resources analyzed. For November, we obtain a
very similar CDF for GPU compute utilization as compared to
Li et al. [9], with 34 % of our GPU-hours belonging to jobs
reaching at least 95 % utilization compared to their 38.5 %. The
January dataset exhibits significantly higher utilization with
fully 60 % of GPU-hours at or above 95 %.

Identifying unused GPU memory resources is slightly more
complicated, as none of the HBM2 utilization values in our
dataset are truly zero (minimum 0.438 GiB), consistent with the
NVML documentation indicating that “the driver/GPU always
sets aside a small amount of memory for bookkeeping.” [51]
The maximum value was the nominal 40 GiB, so that is used
as 100 % for normalization. After this normalization, the data
were manually inspected and a grouping of data was observed
with maximum utilization within 0.5 % of the minimum, so
this is used as a threshold to denote jobs where the actual user
code likely did not make any use of the GPU memory. By this
measure, we observe ~3.8 % of GPU-hours with no HBM2
utilization—noticeably lower than for fully idle compute.

This is again lower than observed by Li et al. [9], who
recorded 10.6 % of GPU-hours using no HBM2 capacity,
but also matches their finding of more GPU-hours with idle
compute as compared to GPU-hours with idle memory. The
reason for this is not clear, but they posit that it may indicate

memory being used by other GPUs via the NVlink or for some
other purpose by the job. For non-idle memory, we also see
relatively even distribution across the full range, albeit with
higher overall utilization than Li et al. [9], with averages over
both datasets of only ~29 % and ~44 % of GPU-hours using
less than 25 % and 50 % of the HBM2 capacity, respectively,
compared to the 49.9 % and 70.5 % observed by Li et al. [9].

While co-scheduling jobs on a single GPU would require
great care to avoid contention issues, co-scheduling jobs
onto different GPUs within a node should be much more
straightforward, especially given the availability of CPU
compute and DDR4 resources already observed. This would
hopefully address the 8–15 % of fully idle GPU compute hours,
and one would then not have to worry about HBM2 capacity
or bandwidth contention because each job would have its own
separate GPU hardware and dedicated HCA.

1) GPU Power Draw: We know that measuring energy
usage of jobs will ultimately be crucial for characterizing the
(energy) efficiency of HPC systems, but such energy data is
still in short supply. In our current datasets, the only relevant
metric is the power draw of the GPUs reported by NVML,
which could in theory be integrated to estimate GPU energy
usage for a job, but the one minute sampling interval of our
data would make this a rough estimate. Fortunately, the GPUs
account for the majority of the power draw on most accelerated
systems, so even in the absence of data for other components
it can still provide some useful insights. For reference, each
A100 has a thermal design power (TDP) of 400 W while for
each EPYC 7402 CPU the TDP is 180 W, meaning the four
GPUs can draw over 4× as much power as the two CPUs, and
as seen in section III-B the CPUs have low utilization on the
Booster making it likely the real ratio is even higher.

CDFs of the measured GPU power usage are shown in Fig. 8.
Of immediate note is that while the average CDFs show that
virtually all jobs have an average draw within the nominal
TDP, just over 10 % of the GPU-hours have maximums that

0 100 200 300 400 500

GPU Power Draw (W)

0%

20%

40%

60%

80%

100%

G
PU

-h
ou

rs

TDP

Nov ’23
Jan ’24

max
avg

Fig. 8. Cumulative distribution functions of maximum and average GPU
power draw per GPU per job, weighted by GPU-hours. Even fully idle GPUs
consume power, and the shape of the curves are much more similar to the
HBM2 Utilization in Fig. 7 than that of the utilization reported by NVML.
Average power draw is almost fully within TDP but maximums may exceed it.

spike above this, with the maximum reported value being
479 W. Partly for this reason, and partly because power is not
a resource we are trying to maximize usage of, we have not
normalized the x-axis in Fig. 8, but rather left it in Watts.

Also, < 1% of GPU-hours had power draw close to zero,
despite observing 8–15 % of GPU-hours with next to zero
compute utilization in Fig. 7. This confirms that such hardware
still consumes some power even while not in use, and therefore
maximizing utilization and reducing idle time should be more
energy efficient for a given amount of computational work.

Given the overly optimistic nature of the utilization metric
reported by NVML, where even a single kernel running on the
GPU shows it as in-use, the power draw can also provide an
interesting comparison as a possible proxy for more realistically
indicating how fully occupied the GPU compute units are. The
curves in Fig. 8 are indeed much more similar to those of the
HBM2 utilization in Fig. 7 and do not show anything like the
saturation near 100 % of the compute utilization in the latter
(Fig. 7). While far from perfect—especially since maximizing
power usage is certainly not a target outcome in itself—this
does indicate that, in the absence of better compute utilization
data, the power draw might serve as a rough approximation.5

D. Interconnect Utilization

To quantify the bandwidth utilization of the network in-
terconnect, LLview reports the total volume of data moved
into and out of each node. These values will include both
I/O data movement to and from the storage system, as well
as communication with other nodes in the job. Data being
communicated with other process on the same node would
not be included here. On the Cluster the nominally reported
network injection bandwidth is 12.5 GB/s bi-directional from

5We note that better measures of GPU occupancy might be gathered from
tools such as NVIDIA’s Data Center GPU Manager (DCGM) [54], but a proxy
can still be useful when such tools are unable to be used (e.g., when the use
of other profiling tools precludes it). FZJ is in the process of adding improved
GPU measures to LLview, but this had not occurred in time for this study.

a single node while for the Booster it is 100 GB/s [1], and so
100 % utilization is normalized to these values in Fig. 9.

Values reported by LLview are average rates of data moved
over the preceding one minute sample period, so short bursts
will be reduced by averaging. Therefore, the values of the
maximum CDFs in Fig. 9 are the maximum values for each
job recorded in our dataset, but instantaneous rates could have
been significantly higher. In particular, note that sustaining
100 % of the bandwidth caps over a full one minute sampling
interval would imply moving 750 GB or 6000 GB of data per
node per minute for the Cluster and Booster, respectively. It
would seem likely to be difficult for a code to make effective use
of such volumes of data, particularly when the local memory
capacity is almost an order of magnitude smaller. As network
bandwidth utilization is known to be bursty [8], it is likely
that many jobs will still max out the bandwidth over shorter
intervals, so while it may seem over-provisioned on average—
due to our large sample interval—that is because the limit
is designed to avoid bottlenecking during intense bursts and
thereby degrading application performance.

Fig. 9 indeed shows that the vast majority of the workload
on both modules never require such high sustained data transfer.
With the exception of incoming data transfer on the Cluster,
over 80 % of the node-hours reach maximally 15 % of the
respective maximum bandwidth per minute. That the maximum
incoming data transfer is significantly higher on the Cluster
compared to the outgoing, while the average CDFs for incoming
and outgoing almost entirely overlap, implies that Cluster
workloads tend to have short but intense phases of reading in
data, presumably during initialization, whereas writing reaches
significantly lower sustained peaks. Interestingly, this separation
is not seen for the Booster, which implies a more balanced
ratio of data being read and written throughout the runtime of
GPU-accelerated jobs.

Michelogiannakis et al. [8] observed similarly low network
bandwidth usage per node, although comparing exact numbers
is problematic because firstly, they sample every second, which
will facilitate capturing of short but intense peaks; and secondly,
they plot their CDFs using all samples individually, rather than
first aggregating over each job. They do see higher usage
on their higher concurrency KNL (Knights Landing) nodes
compared to their Haswell nodes, a trend that is borne out
also in our data, where the Booster nodes reach much higher
absolute bandwidth utilization compared to the Cluster (the
entire range for the Cluster data is just the smallest 12.5 %
of that for the Booster). This is to be expected, as the much
greater computing power of the GPU accelerators would require
commensurately more data to keep the compute units occupied.

For scheduling, this implies that one need not be too
concerned about saturating the individual node interconnect
bandwidth limits when adding more jobs; however, further
investigation of other potential choke points in the network
topology will be required beyond the scope of this present
work. In particular, the Cluster CDFs for incoming data transfer
have fat tails, which might merit some special consideration
for high-utilization reading-in phases of certain jobs.

0% 20% 40% 60% 80% 100%
0%

20%

40%

60%

80%

100%
N

od
e-

ho
ur

s

Cluster (CPU-only jobs)

0% 20% 40% 60% 80% 100%

Booster (GPU-accelerated jobs)

Interconnect Bandwidth Utilization

Nov ’23
Jan ’24

outgoing
incoming

max
avg

Fig. 9. Cumulative distribution functions of maximum and average outgoing and incoming interconnect bandwidth utilization per job, weighted by node-hours.
Blue and red denote outgoing and incoming data transfer, respectively (in some cases the blue almost fully overlaps the red). Darker shades and lighter tints
denote the November and January datasets, respectively. Utilization is measured as the average over the preceding minute, and 100 % utilization corresponds to
12.5 GB/s on the Cluster and 100 GB/s on the Booster. The data indicates very low utilization for all curves, with fatter tail for incoming data on the Cluster.

IV. CONCLUSIONS

This paper describes a thorough study of the utilization of
various hardware resources on JUWELS, a modular supercom-
puter that has been in production for several years. We analyze
two independent full-month datasets from JUWELS to verify
the robustness over time and also compare with results from
previous literature to establish that our main conclusions are
generalizable between different machines and HPC centers.

Overall utilization is found to be much closer to optimal
on the Cluster module, particularly for CPU compute, where
almost all node hours occur at sensible operating points and the
average and maximum usage are close to each other. This aligns
with the hypothesis that high utilization is easier to achieve
on more homogeneous systems, especially as application
developers have had more time to adapt codes for multicore
CPU-only architectures as compared to accelerated systems.

On the Booster, the CPUs are found to merely support the
GPUs, as expected, so there would be plenty of scope for
co-scheduling CPU-focused and GPU-focused jobs. There is
also significant underutilization of host memory capacity, with
only a quarter of jobs using more than half the DDR4 at
any point in their runtimes. Thus, there would be capacity
available for co-scheduled jobs (memory bandwidth must also
be considered, as noted in section III-A, but was outside the
scope of data available for this study). Some fully idle GPU-
hours are observed, likely due to jobs that are not configured to
use all four GPUs on a node, so co-scheduling of multiple such
jobs on a single node would be an obvious first step to improve
GPU utilization without having to worry about contention for
individual GPU compute, HBM2 or HCA resources.

Analyzing the areas under and between the CDFs for both the
average and maximum resource utilization revealed that most
co-scheduling gains should be realizable by optimizing static
allocations, which do not change over time but are matched to
the maximum amount needed at any point in the job’s runtime.

Attempting to co-schedule jobs with complementary temporal
variation (where the maximum requirements may be larger than
can be accommodated concurrently, but are expected to occur
at different times) is both a much more challenging problem
and with much smaller potential gains.

We were also able to make many similar observations
as Peng et al. [13], Michelogiannakis et al. [8], and Li et
al. [9] despite having a one minute sampling frequency for
our data, compared to their one and ten second cadences.
Moreover, this validates the procedure of Peng et al. [13]
where they coarsened their data to one minute intervals before
analysis. This demonstrates that useful conclusions can be
drawn without requiring intractably large data sets and while
minimizing the impact of monitoring processes on the executing
workloads. Higher sampling rates can be reserved for only
selected resources such as interconnect usage, where bursty
rather than sustained usage is more common.

Future work will include making such analysis more sys-
tematic, e.g., generating such CDFs at periodic intervals to
better understand and identify high-level changes or anomalies
in system utilization. As well, actual development, implemen-
tation, and testing of dynamic co-scheduling policies will be
undertaken as part of a multi-year effort to improve efficiency,
guided initially by the conclusions from this study. This will
also involve addressing identified deficiencies such as how to
measure memory bandwidth usage to avoid contention therein.

ACKNOWLEDGMENTS

The authors gratefully acknowledge our colleagues at the
Jülich Supercomputing Centre, in particular Benedikt von
St. Vieth for comments on the draft manuscript and details
of the hardware and monitoring infrastructure, and Andreas
Herten for insights on the network configuration. We would also
like to acknowledge George Michelogiannakis from Lawrence
Berkeley National Laboratory and Jie Li from Texas Tech
University for discussions during the early stages of this work.

REFERENCES

[1] Jülich Supercomputing Centre, “JUWELS Cluster and Booster: Exas-
cale pathfinder with modular supercomputing architecture at Juelich
Supercomputing Centre,” JLSRF, vol. 7, A183, Oct. 29, 2021, https:
//doi.org/10.17815/jlsrf-7-183

[2] TOP500.org. “November 2023,” TOP500, Accessed: Mar. 11, 2024.
[Online]. Available: https://www.top500.org/lists/top500/2023/11/

[3] J. C. Browne et al., “Comprehensive, open-source resource usage
measurement and analysis for HPC systems,” Concurr. Comput.,
vol. 26, no. 13, pp. 2191–2209, Sep. 10, 2014, https : / / doi . org /
10.1002/cpe.3245

[4] A. Gómez-Iglesias, C. Rosales, and T. Evans, “Practical monitoring
of resource utilization for HPC applications,” in Proc. XSEDE16 Conf.
Divers. Big Data Sci. Scale in XSEDE16, Miami, FL, USA, Jul. 17–21,
2016, pp. 1–8, https://doi.org/10.1145/2949550.2949643

[5] D. Nikitenko, K. Stefanov, S. Zhumatiy, V. Voevodin, A. Teplov,
and P. Shvets, “System monitoring-based holistic resource utilization
analysis for every user of a large HPC center,” in Algorithms Archit.
Parallel Process. in LNCS, J. Carretero et al., Eds. Granada, Spain,
Dec. 14–16, 2016, vol. 10049, pp. 305–318, https://doi.org/10.1007/
978-3-319-49956-7_24

[6] F. Wang, S. Oral, S. Sen, and N. Imam, “Learning from five-year
resource-utilization data of Titan system,” in 2019 IEEE Int. Conf.
Clust. Comput. (CLUSTER), Albuquerque, NM, USA, Sep. 23–26,
2019, pp. 1–6, https://doi.org/10.1109/CLUSTER.2019.8891001

[7] A. Netti, W. Shin, M. Ott, T. Wilde, and N. Bates, “A conceptual
framework for HPC operational data analytics,” in 2021 IEEE Int.
Conf. Clust. Comput. (CLUSTER), Portland, OR, USA, Sep. 7–10,
2021, pp. 596–603, https://doi.org/10.1109/Cluster48925.2021.00086

[8] G. Michelogiannakis et al., “A case for intra-rack resource disag-
gregation in HPC,” ACM Trans. Archit. Code Optim., vol. 19, no. 2,
pp. 1–26, Mar. 7, 2022, https://doi.org/10.1145/3514245

[9] J. Li, G. Michelogiannakis, B. Cook, D. Cooray, and Y. Chen,
“Analyzing resource utilization in an HPC system: A case study of
NERSC’s Perlmutter,” in High Perform. Comput. in LNCS, A. Bhatele,
J. Hammond, M. Baboulin, and C. Kruse, Eds. Hamburg, Germany,
May 21–25, 2023, vol. 13948, pp. 297–316, https://doi.org/10.1007/
978-3-031-32041-5_16

[10] A. Turner and S. McIntosh-Smith, “A survey of application memory
usage on a national supercomputer: An analysis of memory require-
ments on ARCHER,” in High Perform. Comput. Syst. Perform. Model.
Benchmarking Simul. in LNCS, S. Jarvis, S. Wright, and S. Hammond,
Eds. Denver, CO, USA, Nov. 13, 2017, vol. 10724, pp. 250–260,
https://doi.org/10.1007/978-3-319-72971-8_13

[11] D. Zivanovic et al., “Main memory in HPC: Do we need more or
could we live with less?” ACM Trans. Archit. Code Optim., vol. 14,
no. 1, pp. 1–26, Mar. 6, 2017, https://doi.org/10.1145/3023362

[12] G. Panwar et al., “Quantifying memory underutilization in HPC
systems and using it to improve performance via architecture support,”
in Proc. 52nd Annu. IEEE/ACM Int. Symp. Microarchitecture in
MICRO ’52, Columbus, OH, USA, Oct. 12–16, 2019, pp. 821–835,
https://doi.org/10.1145/3352460.3358267

[13] I. Peng, I. Karlin, M. Gokhale, K. Shoga, M. Legendre, and T. Gamblin,
“A holistic view of memory utilization on HPC systems: Current and
future trends,” in Proc. Int. Symp. Mem. Syst. in MEMSYS ’21,
Washington, DC, USA, Sep. 27–30, 2021, pp. 1–11, https://doi.org/
10.1145/3488423.3519336

[14] NERSC. “Perlmutter,” Accessed: Jan. 9, 2024. [Online]. Available:
https://www.nersc.gov/systems/perlmutter/

[15] G. Michelogiannakis et al., “Efficient intra-rack resource disaggrega-
tion for HPC using co-packaged DWDM photonics,” in 2023 IEEE Int.
Conf. Clust. Comput. (CLUSTER), Santa Fe, NM, USA, Oct. 31–Nov. 3,
2023, pp. 158–172, https://doi.org/10.1109/CLUSTER52292.2023.
00021

[16] V. R. Kommareddy, C. Hughes, S. Hammond, and A. Awad, “Investi-
gating fairness in disaggregated non-volatile memories,” in 2019 IEEE
Comput. Soc. Annu. Symp. VLSI (ISVLSI), Miami, FL, USA, Jul. 15–17,
2019, pp. 104–110, https://doi.org/10.1109/ISVLSI.2019.00028

[17] I. Peng, R. Pearce, and M. Gokhale, “On the memory underutilization:
Exploring disaggregated memory on HPC systems,” in 2020 IEEE 32nd
Int. Symp. Comput. Archit. High Perform. Comput. (SBAC-PAD), Porto,
Portugal, Sep. 9–11, 2020, pp. 183–190, https://doi.org/10.1109/SBAC-
PAD49847.2020.00034

[18] J. Wahlgren, G. Schieffer, M. Gokhale, and I. Peng, “A quantitative
approach for adopting disaggregated memory in HPC systems,” in
SC ’23 Proc. Int. Conf. High Perform. Comput. Netw. Storage Anal.,
Denver, CO, USA, Nov. 12–17, 2023, pp. 1–14, https://doi.org/10.
1145/3581784.3607108

[19] F. V. Zacarias, P. Carpenter, and V. Petrucci, “Improving HPC system
throughput and response time using memory disaggregation,” in 2021
IEEE 27th Int. Conf. Parallel Distrib. Syst. (ICPADS), Beijing, China,
Dec. 14–16, 2021, pp. 283–290, https://doi.org/10.1109/ICPADS53394.
2021.00041

[20] F. Zacarias, P. Carpenter, and V. Petrucci, “Dynamic memory pro-
visioning on disaggregated HPC systems,” in SC-W ’23 Proc. SC
’23 Workshops Int. Conf. High Perform. Comput. Netw. Storage Anal.
in SC-W ’23, Denver, CO, USA, Nov. 12–17, 2023, pp. 973–982,
https://doi.org/10.1145/3624062.3624174

[21] M. Copik, M. Chrapek, L. Schmid, A. Calotoiu, and T. Hoefler,
“Software resource disaggregation for HPC with serverless computing,”
in 2024 IEEE Int. Parallel Distrib. Process. Symp. (IPDPS), San
Francisco, CA, USA, May 27–31, 2024, pp. 139–156, https://doi.org/
10.1109/IPDPS57955.2024.00021

[22] J. Li et al., “Job scheduling in high performance computing systems
with disaggregated memory resources,” in 2024 IEEE Int. Conf. Clust.
Comput. (CLUSTER), Kobe, Japan, Sep. 24–27, 2024, pp. 297–309,
https://doi.org/10.1109/CLUSTER59578.2024.00033

[23] S. Blagodurov and A. Fedorova, “Towards the contention aware
scheduling in HPC cluster environment,” in J. Phys. Conf. Ser.,
Vancouver, BC, Canada, May 1–3, 2012, vol. 385, p. 012 010, https:
//doi.org/10.1088/1742-6596/385/1/012010

[24] C. Galleguillos, A. Sîrbu, Z. Kiziltan, O. Babaoglu, A. Borghesi,
and T. Bridi, “Data-driven job dispatching in HPC systems,” in Mach.
Learn. Optim. Big Data in LNCS, G. Nicosia, P. Pardalos, G. Giuffrida,
and R. Umeton, Eds. Volterra, Italy, Sep. 14–17, 2017, vol. 10710,
pp. 449–461, https://doi.org/10.1007/978-3-319-72926-8_37

[25] A. Netti, C. Galleguillos, Z. Kiziltan, A. Sîrbu, and O. Babaoglu,
“Heterogeneity-aware resource allocation in HPC systems,” in High
Perform. Comput. in LNCS, R. Yokota, M. Weiland, D. Keyes, and
C. Trinitis, Eds. Frankfurt, Germany, Jun. 24–28, 2018, vol. 10876,
pp. 3–21, https://doi.org/10.1007/978-3-319-92040-5_1

[26] Q. Xiong, E. Ates, M. C. Herbordt, and A. K. Coskun, “Tangram:
Colocating HPC applications with oversubscription,” in 2018 IEEE
High Perform. Extrem. Comput. Conf. (HPEC), Waltham, MA, USA,
Sep. 25–27, 2018, pp. 1–7, https: / /doi .org/10.1109/HPEC.2018.
8547644

[27] F. V. Zacarias, V. Petrucci, R. Nishtala, P. Carpenter, and D. Mosse,
“Intelligent colocation of workloads for enhanced server efficiency,” in
2019 31st Int. Symp. Comput. Archit. High Perform. Comput. (SBAC-
PAD), Campo Grande, Brazil, Oct. 15–18, 2019, pp. 120–127, https:
//doi.org/10.1109/SBAC-PAD.2019.00030

[28] A. V. Goponenko, R. Izadpanah, J. M. Brandt, and D. Dechev,
“Towards workload-adaptive scheduling for HPC clusters,” in 2020
IEEE Int. Conf. Clust. Comput. (CLUSTER), Kobe, Japan, Sep. 14–17,
2020, pp. 449–453, https://doi.org/10.1109/CLUSTER49012.2020.
00064

[29] F. V. Zacarias, V. Petrucci, R. Nishtala, P. Carpenter, and D. Mossé,
“Intelligent colocation of HPC workloads,” J. Parallel Distrib. Comput.,
vol. 151, pp. 125–137, May 2021, https://doi.org/10.1016/j.jpdc.2021.
02.010

[30] A. Tzenetopoulos, D. Masouros, S. Xydis, and D. Soudris,
“Interference-aware workload placement for improving latency dis-
tribution of converged HPC/big data cloud infrastructures,” in Embed.
Comput. Syst. Archit. Model. Simul. in LNCS, A. Orailoglu, M. Jung,
and M. Reichenbach, Eds. Virtual Event, Jul. 4–8, 2021, vol. 13227,
pp. 108–123, https://doi.org/10.1007/978-3-031-04580-6_8

[31] S. Xue et al., “Kronos: Towards bus contention-aware job scheduling
in warehouse scale computers,” Front. Comput. Sci., vol. 17, no. 1,
p. 171 101, Aug. 8, 2022, https://doi.org/10.1007/s11704-021-0418-5

[32] S. Zhuravlev, S. Blagodurov, and A. Fedorova, “Addressing shared
resource contention in multicore processors via scheduling,” SIGPLAN
Not., vol. 45, no. 3, pp. 129–142, Mar. 13, 2010, https://doi.org/10.
1145/1735971.1736036

[33] D. Xu, C. Wu, and P.-C. Yew, “On mitigating memory bandwidth
contention through bandwidth-aware scheduling,” in Proc. 19th Int.
Conf. Parallel Archit. Compil. Tech., Vienna, Austria, Sep. 11–15,
2010, pp. 237–248, https://doi.org/10.1145/1854273.1854306

https://doi.org/10.17815/jlsrf-7-183
https://doi.org/10.17815/jlsrf-7-183
https://www.top500.org/lists/top500/2023/11/
https://doi.org/10.1002/cpe.3245
https://doi.org/10.1002/cpe.3245
https://doi.org/10.1145/2949550.2949643
https://doi.org/10.1007/978-3-319-49956-7_24
https://doi.org/10.1007/978-3-319-49956-7_24
https://doi.org/10.1109/CLUSTER.2019.8891001
https://doi.org/10.1109/Cluster48925.2021.00086
https://doi.org/10.1145/3514245
https://doi.org/10.1007/978-3-031-32041-5_16
https://doi.org/10.1007/978-3-031-32041-5_16
https://doi.org/10.1007/978-3-319-72971-8_13
https://doi.org/10.1145/3023362
https://doi.org/10.1145/3352460.3358267
https://doi.org/10.1145/3488423.3519336
https://doi.org/10.1145/3488423.3519336
https://www.nersc.gov/systems/perlmutter/
https://doi.org/10.1109/CLUSTER52292.2023.00021
https://doi.org/10.1109/CLUSTER52292.2023.00021
https://doi.org/10.1109/ISVLSI.2019.00028
https://doi.org/10.1109/SBAC-PAD49847.2020.00034
https://doi.org/10.1109/SBAC-PAD49847.2020.00034
https://doi.org/10.1145/3581784.3607108
https://doi.org/10.1145/3581784.3607108
https://doi.org/10.1109/ICPADS53394.2021.00041
https://doi.org/10.1109/ICPADS53394.2021.00041
https://doi.org/10.1145/3624062.3624174
https://doi.org/10.1109/IPDPS57955.2024.00021
https://doi.org/10.1109/IPDPS57955.2024.00021
https://doi.org/10.1109/CLUSTER59578.2024.00033
https://doi.org/10.1088/1742-6596/385/1/012010
https://doi.org/10.1088/1742-6596/385/1/012010
https://doi.org/10.1007/978-3-319-72926-8_37
https://doi.org/10.1007/978-3-319-92040-5_1
https://doi.org/10.1109/HPEC.2018.8547644
https://doi.org/10.1109/HPEC.2018.8547644
https://doi.org/10.1109/SBAC-PAD.2019.00030
https://doi.org/10.1109/SBAC-PAD.2019.00030
https://doi.org/10.1109/CLUSTER49012.2020.00064
https://doi.org/10.1109/CLUSTER49012.2020.00064
https://doi.org/10.1016/j.jpdc.2021.02.010
https://doi.org/10.1016/j.jpdc.2021.02.010
https://doi.org/10.1007/978-3-031-04580-6_8
https://doi.org/10.1007/s11704-021-0418-5
https://doi.org/10.1145/1735971.1736036
https://doi.org/10.1145/1735971.1736036
https://doi.org/10.1145/1854273.1854306

[34] A. D. Breslow et al., “The case for colocation of high performance
computing workloads,” Concurr. Comput., vol. 28, no. 2, pp. 232–251,
Dec. 10, 2013, https://doi.org/10.1002/cpe.3187

[35] D. Dauwe et al., “HPC node performance and energy modeling with
the co-location of applications,” J. Supercomput., vol. 72, no. 12,
pp. 4771–4809, Jun. 24, 2016, https://doi.org/10.1007/s11227-016-
1783-y

[36] A. Kuity and S. K. Peddoju, “cHPCe: Data locality and memory
bandwidth contention-aware containerized HPC,” in ICDCN ’23 Proc.
24th Int. Conf. Distrib. Comput. Netw., Kharagpur, India, Jan. 4–7,
2023, pp. 160–166, https://doi.org/10.1145/3571306.3571402

[37] Forschungszentrum Jülich. “JUWELS: Jülich Wizard for European
Leadership Science,” Jülich Supercomputing Centre (JSC), Accessed:
Nov. 16, 2023. [Online]. Available: https://www.fz-juelich.de/en/ias/
jsc/systems/supercomputers/juwels

[38] E. Suarez, N. Eicker, and T. Lippert, “Supercomputer evolution at JSC,”
in NIC Symp. 2018 in Publication Series of the John von Neumann
Institute for Computing (NIC) NIC Series, K. Binder, M. Müller,
and A. Trautmann, Eds. Jülich, Germany, Feb. 22–23, 2018, vol. 49,
pp. 1–12, ISBN: 978-3-95806-285-6. [Online]. Available: http://hdl.
handle.net/2128/17546

[39] E. Suarez, N. Eicker, and T. Lippert, “Modular supercomputing archi-
tecture: From idea to production,” in Contemporary High Performance
Computing: From Petascale toward Exascale in Chapman & Hall/CRC
Computational Science Series, J. S. Vetter, Ed., red. by Sahni, Sartaj,
1st ed., vol. 3, 3 vols., Boca Raton, FL, USA: CRC Press, May 16,
2019, pp. 223–255, https://doi.org/10.1201/9781351036863-9

[40] E. Suarez et al., “Modular supercomputing architecture: A success
story of European R&D,” ETP4HPC, White Paper, May 11, 2022,
https://doi.org/10.5281/zenodo.6508393

[41] M. Riedel et al., “Practice and experience in using parallel and scalable
machine learning with heterogenous modular supercomputing architec-
tures,” in 2021 IEEE Int. Parallel Distrib. Process. Symp. Workshops
(IPDPSW), Portland, OR, USA, Jun. 17–21, 2021, pp. 76–85, https:
//doi.org/10.1109/IPDPSW52791.2021.00019

[42] N. Eicker and T. Lippert, “An accelerated cluster-architecture for the
exascale,” PARS-Mitteilungen, vol. 28, no. 1, pp. 110–119, Oct. 2011,
https://doi.org/10.1007/BF03341990

[43] D. Alvarez Mallon, N. Eicker, M. E. Innocenti, G. Lapenta, T. Lippert,
and E. Suarez, “On the scalability of the clusters-booster concept: A

critical assessment of the DEEP architecture,” in Proc. Futur. HPC Syst.
Chall. Power-Constrained Perform. in FutureHPC ’12, Venezia, Italy,
Jun. 25, 2012, pp. 1–10, https://doi.org/10.1145/2322156.2322159

[44] A. Kreuzer, N. Eicker, J. Amaya, and E. Suarez, “Application
performance on a cluster-booster system,” in 2018 IEEE Int. Parallel
Distrib. Process. Symp. Workshops (IPDPSW), Vancouver, BC, Canada,
May 21–25, 2018, pp. 69–78, https://doi.org/10.1109/IPDPSW.2018.
00019

[45] A. B. Yoo, M. A. Jette, and M. Grondona, “SLURM: Simple Linux
utility for resource management,” in Job Sched. Strateg. Parallel
Process. in LNCS, D. Feitelson, L. Rudolph, and U. Schwiegelshohn,
Eds. Seattle, WA, USA, Jun. 24, 2003, vol. 2862, pp. 44–60, https:
//doi.org/10.1007/10968987_3

[46] M. A. Jette and T. Wickberg, “Architecture of the Slurm workload
manager,” in Job Sched. Strateg. Parallel Process. in LNCS, D.
Klusáček, J. Corbalán, and G. P. Rodrigo, Eds. St. Petersburg, FL,
USA, May 19, 2023, vol. 14283, pp. 3–23, https://doi.org/10.1007/978-
3-031-43943-8_1

[47] SchedMD. “Slurm workload manager,” Accessed: Dec. 12, 2023.
[Online]. Available: https://slurm.schedmd.com/

[48] Y. Müller, F. S. M. Guimarães, C. Karbach, and W. Frings, LLview,
version v2.2.3-base, Zenodo, Feb. 13, 2024, https://doi.org/10.5281/
zenodo.10221407

[49] “LLview,” Accessed: Nov. 28, 2023. [Online]. Available: https://llview.
fz-juelich.de

[50] Prometheus Authors. “Prometheus - Monitoring system & time series
database,” Accessed: Mar. 20, 2024. [Online]. Available: https : / /
prometheus.io/

[51] NVIDIA. “NVIDIA Management Library (NVML),” NVIDIA Devel-
oper, Accessed: Mar. 4, 2024. [Online]. Available: https://developer.
nvidia.com/nvidia-management-library-nvml

[52] The pandas development team, Pandas-dev/pandas: Pandas, ver-
sion 2.2.0, Zenodo, Jan. 20, 2024, https://doi.org/10.5281/zenodo.
3509134

[53] W. McKinney, “Data structures for statistical computing in python,”
in Proc. 9th Python Sci. Conf., S. van der Walt and J. Millman, Eds.
Austin, TX, USA, Jun. 28–Jul. 3, 2010, pp. 56–61, https://doi.org/10.
25080/Majora-92bf1922-00a

[54] NVIDIA. “NVIDIA DCGM,” NVIDIA Developer, Accessed: Mar. 4,
2024. [Online]. Available: https://developer.nvidia.com/dcgm

https://doi.org/10.1002/cpe.3187
https://doi.org/10.1007/s11227-016-1783-y
https://doi.org/10.1007/s11227-016-1783-y
https://doi.org/10.1145/3571306.3571402
https://www.fz-juelich.de/en/ias/jsc/systems/supercomputers/juwels
https://www.fz-juelich.de/en/ias/jsc/systems/supercomputers/juwels
http://hdl.handle.net/2128/17546
http://hdl.handle.net/2128/17546
https://doi.org/10.1201/9781351036863-9
https://doi.org/10.5281/zenodo.6508393
https://doi.org/10.1109/IPDPSW52791.2021.00019
https://doi.org/10.1109/IPDPSW52791.2021.00019
https://doi.org/10.1007/BF03341990
https://doi.org/10.1145/2322156.2322159
https://doi.org/10.1109/IPDPSW.2018.00019
https://doi.org/10.1109/IPDPSW.2018.00019
https://doi.org/10.1007/10968987_3
https://doi.org/10.1007/10968987_3
https://doi.org/10.1007/978-3-031-43943-8_1
https://doi.org/10.1007/978-3-031-43943-8_1
https://slurm.schedmd.com/
https://doi.org/10.5281/zenodo.10221407
https://doi.org/10.5281/zenodo.10221407
https://llview.fz-juelich.de
https://llview.fz-juelich.de
https://prometheus.io/
https://prometheus.io/
https://developer.nvidia.com/nvidia-management-library-nvml
https://developer.nvidia.com/nvidia-management-library-nvml
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.25080/Majora-92bf1922-00a
https://developer.nvidia.com/dcgm

	Introduction
	Related works
	System configurations

	Data collection
	Job Durations
	Job Sizes

	Resource Utilization
	Main Memory on the CPU
	CPU Compute
	GPU Utilization
	GPU Power Draw

	Interconnect Utilization

	Conclusions

