| Hauptseite > Publikationsdatenbank > Local Binary and Multiclass SVMs Trained on a Quantum Annealer > print |
| 001 | 1031802 | ||
| 005 | 20250203133212.0 | ||
| 024 | 7 | _ | |a 10.1109/TQE.2024.3475875 |2 doi |
| 024 | 7 | _ | |a 10.34734/FZJ-2024-05822 |2 datacite_doi |
| 024 | 7 | _ | |a WOS:001346704400001 |2 WOS |
| 037 | _ | _ | |a FZJ-2024-05822 |
| 082 | _ | _ | |a 621.3 |
| 100 | 1 | _ | |a Zardini, Enrico |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
| 245 | _ | _ | |a Local Binary and Multiclass SVMs Trained on a Quantum Annealer |
| 260 | _ | _ | |a New York, NY |c 2024 |b IEEE |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1730975620_13200 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Support vector machines (SVMs) are widely used machine learning models, with formulations for both classification and regression tasks. In the last years, with the advent of working quantum annealers, hybrid SVM models characterised by quantum training and classical execution have been introduced. These models have demonstrated comparable performance to their classical counterparts. However, they are limited in the training set size due to the restricted connectivity of the current quantum annealers. Hence, to take advantage of large datasets, a strategy is required. In the classical domain, local SVMs, namely, SVMs trained on the data samples selected by a k -nearest neighbors model, have already proven successful. Here, the local application of quantum-trained SVM models is proposed and empirically assessed. In particular, this approach allows overcoming the constraints on the training set size of the quantum-trained models while enhancing their performance. In practice, the Fast Local Kernel Support Vector Machine (FaLK-SVM) method, designed for efficient local SVMs, has been combined with quantum-trained SVM models for binary and multiclass classification. In addition, for comparison, FaLK-SVM has been interfaced for the first time with a classical single-step multiclass SVM model (CS SVM). Concerning the empirical evaluation, D-Wave's quantum annealers and real-world datasets taken from the remote sensing domain have been employed. The results have shown the effectiveness and scalability of the proposed approach, but also its practical applicability in a real-world large-scale scenario. |
| 536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Delilbasic, Amer |0 P:(DE-Juel1)191384 |b 1 |
| 700 | 1 | _ | |a Blanzieri, Enrico |0 0000-0001-6524-0601 |b 2 |
| 700 | 1 | _ | |a Cavallaro, Gabriele |0 P:(DE-Juel1)171343 |b 3 |
| 700 | 1 | _ | |a Pastorello, Davide |0 P:(DE-HGF)0 |b 4 |
| 773 | _ | _ | |a 10.1109/TQE.2024.3475875 |g p. 1 - 13 |0 PERI:(DE-600)3035782-2 |p 3103512 |t IEEE transactions on quantum engineering |v 5 |y 2024 |x 2689-1808 |
| 856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1031802/files/postprint.pdf |
| 856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1031802/files/pre-print.pdf |
| 856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1031802/files/pre-print.gif?subformat=icon |
| 856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/1031802/files/pre-print.jpg?subformat=icon-1440 |
| 856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1031802/files/pre-print.jpg?subformat=icon-180 |
| 856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/1031802/files/pre-print.jpg?subformat=icon-640 |
| 909 | C | O | |o oai:juser.fz-juelich.de:1031802 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)191384 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)171343 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 0 |
| 914 | 1 | _ | |y 2024 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-09-03 |
| 915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-09-03 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-12 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-12 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-04-03T10:39:05Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-04-03T10:39:05Z |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2024-04-03T10:39:05Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-12 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0112 |2 StatID |b Emerging Sources Citation Index |d 2024-12-12 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-12 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|