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ABSTRACT Support vector machines (SVMs) are widely used machine learning models, with for-
mulations for both classification and regression tasks. In the last years, with the advent of working
quantum annealers, hybrid SVM models characterised by quantum training and classical execution have
been introduced. These models have demonstrated comparable performance to their classical counterparts.
However, they are limited in the training set size due to the restricted connectivity of the current quantum
annealers. Hence, to take advantage of large datasets, a strategy is required. In the classical domain,
local SVMs, namely, SVMs trained on the data samples selected by a k-nearest neighbors model, have
already proven successful. Here, the local application of quantum-trained SVM models is proposed and
empirically assessed. In particular, this approach allows overcoming the constraints on the training set
size of the quantum-trained models while enhancing their performance. In practice, the Fast Local Kernel
Support Vector Machine (FaLK-SVM) method, designed for efficient local SVMs, has been combined with
quantum-trained SVM models for binary and multiclass classification. In addition, for comparison, FalLK-
SVM has been interfaced for the first time with a classical single-step multiclass SVM model (CS SVM).
Concerning the empirical evaluation, D-Wave’s quantum annealers and real-world datasets taken from the
remote sensing domain have been employed. The results have shown the effectiveness and scalability of the
proposed approach, but also its practical applicability in a real-world large-scale scenario.

INDEX TERMS Locality, quantum annealing, quantum computing, support vector machines.

l. INTRODUCTION

UPPORT vector machines (SVMs) are supervised ma-

chine learning models designed for binary classification
tasks [1]]. Specifically, an SVM aims to identify the optimal
hyperplane that effectively separates data samples belonging
to distinct classes. However, with the introduction of kernel
functions, SVMs can go beyond linearly separable problems
[2]. Furthermore, various formulations of the learning prob-
lem exist, and also extensions to multiclass classification and
regression tasks [3], [4]. In the last years, with the increasing
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popularity of the quantum annealing machines produced by
D-Wave [5]], hybrid SVM models characterised by quantum
training and classical execution have been proposed. In de-
tail, hybrid versions for binary classification [6], multiclass
classification [[7], and regression [8|] tasks have been devel-
oped. These models have been evaluated mainly in the remote
sensing domain (see also [9]-[11]), showing comparable
performance with respect to their classical counterparts. Nev-
ertheless, due to the restricted connectivity of the available
quantum annealers, they are limited in the training set size.


https://www.fz-juelich.de/ias/jsc
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Therefore, in order to leverage large datasets, a strategy is
necessary.

In the classical realm, reducing the number of input sam-
ples to a machine learning model through a locality tech-
nique, such as the k-nearest neighbors (k-NN) algorithm
[12], has proven to be successful, yielding performance
improvements compared to the base model. For instance,
Blanzieri and Melgani have proposed and empirically as-
sessed the KNNSVM classifier [[13]], namely, a local binary
SVM trained on data samples selected by a k-NN model,
achieving good results. Moreover, local SVMs have been
theoretically characterised by researchers like Hable [14]] and
Meister and Steinwart [15]. However, despite the accuracy
improvement and reduced training time per model (resulting
from the lower number of samples employed for training),
an SVM must be trained on the k-neighborhood of each test
sample, which is a significant bottleneck in terms of execu-
tion time. To address this issue, Segata and Blanzieri have
developed the Fast Local Kernel Support Vector Machine
(FaLK-SVM) [16], which relies on the usage of the cover
tree data structure [[17]].

In this work, the local application of quantum-trained
SVM models is proposed and empirically evaluated. Indeed,
local classically-trained binary SVMs have already demon-
strated to be successful, and quantum-trained SVMs have
exhibited similar performance to their classical counterparts.
Moreover, the usage of local quantum-trained models, as op-
posed to global ones, represents a valid solution to the train-
ing set size limits imposed by the connectivity of the current
quantum annealers. In practice, FaALK-SVM [16]], the method
for efficient local SVMs, has been interfaced with two
quantum-trained SVM models: the quantum-trained SVM for
binary classification (QBSVM) [6]], and the quantum-trained
SVM for multiclass classification (QMSVM) [7]. Addition-
ally, for comparison, FaLK-SVM has been combined for the
first time with CS SVM [3]], the classical single-step multi-
class SVM model on which QMSVM is based. Hence, the
addressed tasks are binary and multiclass classification. For
the empirical evaluation, D-Wave’s quantum annealers and
real-world datasets belonging to the remote sensing domain
have been used.

The article is organized as follows: Section [[] provides
some background information; Section |[II| presents the pro-
posed approach and the implementation details; Section
deals with the experiments performed and the results ob-
tained; Section[V]concludes the work.

Il. BACKGROUND

This section provides some background information about
quantum annealing, QUBO problems and their embedding,
quantum-trained support vector machines, and local support
vector machines.

A. QUANTUM ANNEALING, QUBO, AND EMBEDDING
Quantum annealing (QA) is a heuristic search used to solve
optimization problems [18], [19]. In particular, in QA, the
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optimal solution of a given problem corresponds to the
ground state of a quantum system described by a Hamilto-
nian encoding the structure of the problem. In this sense, QA
is related to adiabatic quantum computing, but there are some
remarkable differences [[20]. Specifically, let us consider the
time-dependent Hamiltonian

H(t)=T(t)Hp + Hp, e [0, 7], (1)

where Hp and Hp are non-commuting operators on the n-
qubit Hilbert space (C?)®" called problem Hamiltonian and
transverse field Hamiltonian, respectively, I is a positive
decreasing function that attenuates the contribution of Hp,
and 7 is the evolution time. Ideally, the annealing process
drives the quantum system towards the ground state of Hp,
which is designed to represent the optimization problem.
However, due to the non-adiabaticity of the QA process (e.g.,
because of thermalization effects), the system might end
up being trapped into a local minimum, requiring multiple
iterations in order to find the optimal solution.

QA can be physically realized by considering a network
of qubits arranged on the vertices of a graph (V, E), with
|V| = n and whose edges E represent the couplings among
the qubits. Then, the problem Hamiltonian can be defined as

follows:
Zga(t)+ Z 0, U(z) (J) )

i€V (i,5)€E

Hp=H

where the real coefficients 6;, 6;; are arranged into the matrix
©® and ogz) is a 2™ x 2™ matrix that acts as the Pauli matrix

on the ¢-th tensor factor and as the 2 x 2 identity matrix on the
other tensor factors. By definition, the set of eigenvalues of
the problem Hamiltonian (2)) is the set of all possible values
of the cost function given by the energy of the well-known

Ising model:
29 zi + Z 05225, (@)

i€V (i,9)€E

where z = (21, ..., z,) € {—1, 1}!V]. In practice, ideally, the
annealing procedure, also called cooling, drives the system
into the ground state of H(©), which corresponds to the spin
configuration encoding the solution:

2" = azreg{nalrll}‘v' E(©, z). 5)
Given a problem, the annealer is initialized using a suit-
able choice of the weights ®, and the binary variables
z; € {—1,1} are physically realized by the outcomes of
the measurements performed on the qubits located on the
vertices V. This process is iterated multiple times to increase
the probability of finding the optimal solution. In order to
solve a general optimization problem through QA, it is first
necessary to find an encoding of the objective function in
terms of the cost function @]), which is hard in general.
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However, if the quantum architecture is able to provide
a fully connected graph (V| E), then any Quadratic Un-
constrained Binary Optimization (QUBO) problem can be
directly represented into the cost function by means of the
change of variables z; = Z"Srl € B = {0, 1}. Indeed, QUBO
problems are NP-hard problems of the form

argmin ! Qz, (6)
TEB”

where () is an upper triangular (or symmetric) matrix of real
values, and they can be rewritten as

2" Qu = qum +Z Z Gij T

=1 j= z+1

= Zq”xz + Z Z qijTiTj, @)

=1 j=i4+1

where ch = x; since x; € B. In practice, the main diagonal
of () contains the linear coefficients (g;;), whereas the rest
of the matrix contains the quadratic ones (g;;). Although
QUBO problems are unconstrained by definition, it is actu-
ally possible to introduce constraints by representing them as
penalties [21].

In general, due to the sparseness of the available quantum
annealer topologies, a direct representation of the problem
is typically not possible. The solution consists in chaining
together multiple physical qubits that will act as a single
logical qubit. In this way, the connectivity of the annealer
graph is increased at the price of reducing the number of
logical qubits available and, consequently, the size of the
representable problems. However, there are also drawbacks
in terms of the quality of the obtained results and, more
in general, of performance [22]]. For instance, qubit chains
might break during the annealing process. In particular, the
mapping of the problem variables on the annealer topology
is known as embedding.

In conclusion, by exploiting quantum effects, such as
quantum tunnelling and superposition, QA represents an
interesting alternative to classical QUBO solvers.

B. QUANTUM-TRAINED SVM MODELS

Quantum-trained SVMs are classical SVMs trained with
quantum annealing and executed classically. In this paper,
the focus is on the models for binary and multiclass classi-
fication, whose details are provided in the following.

1) Quantum Binary SVM (QBSVM)

In the work by Willsch et al. [|6], the standard formulation
of the binary SVM has been reframed as a QUBO problem,
as in (6). Training a binary SVM consists in the following
quadratic programming problem:

minimize FE = E O YnYmk (Xn, Xm)

E a'll
nm

subjectto 0 < o, < A, Zanyn =0, ()

n
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for NV coefficients a,, € R, where {(X,, y»)} is the training
set of N examples, k (x,,,X,,) is the kernel function, and
A is the regularization parameter. The resulting classifier is
defined as

f(x) = sign (Z anynk (X, %) + b) : ©)

where the bias b is chosen as

Zn an(A—an) [yn — Zm A Ymk (X, Xm)]
> (A —an) '

Being already quadratic, this real-valued, constrained opti-
mization problem can be converted to a QUBO problem by
adding the constraints to the cost function as penalty terms
with a multiplier £, and encoding a discretized solution space
using K binary variables a;:

K—1
k
= E B*arnik,
k=0

where B € N is the base used for the encoding (any natural
value can be chosen). The corresponding QUBO problem
becomes

b= (10)

an

N-1 K-1
minimize Z Z ARtk Q Kntk, Km+j0Km+j
n,m=0k,j=0
1 )
_ k+
QKn+k,K7n+j = 58 Jynym (k (Xm Xm) + 5)

12)

- 6nm6ijka

with §;; being the Kronecker delta.

Since this QUBO formulation might yield matrices not
embeddable in the available quantum annealers, Willsch et
al. have proposed the following approach. Firstly, the dataset
is partitioned into L disjoint slices. Then, for each slice, the
decision functions of the .S best solutions (in terms of energy)
obtained from the annealer are averaged. Lastly, the classifier,
which corresponds to an ensemble of SVMs, is defined as

| L=t /Nt -
19 =sen (3 (St 4" ) ).
B (13)
where aﬂ ) and E(Z) are the n-th mean coefficient and the mean
bias for the [-th slice. Actually, averaging the S best solution
can be used even in scenarios where dataset splitting is not
required.

2) Quantum Multiclass SVM (QMSVM)

In the same way as its classical counterpart, there are two
different approaches for extending QBSVM to multiclass
classification. The problem can be decomposed into multiple
binary problems and a QBSVM model can be trained on
each subproblem, combining the obtained classifiers in an
ensemble. Alternatively, a model trained to directly classify
examples among multiple classes should be defined. The
QMSVM approach proposed by Delilbasic et al. [7] is based

3
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on the CS SVM model [3]], which consists in the following
optimization problem:

N-1 Cc-1

E :% Z k(Xn,17Xn2) Z TnicTnac

ny,m2=0 c=0
N-1C-1

- ﬂ Z Z 5cyn7_nc

n=0 c=0

c-1
Z Tne = 0 Vn,
c=0

minimize

subject to Tne < 0 Vn,Ve # yn,.

(14)

Here, C' is the number of classes, 7, € [—1,1] are the NC
problem variables, and [ is a regularization parameter. The
resulting classifier is defined as:

N-1

f(x)= arg@ax Z Tnck(Xp, X).

n=0

15)

As for the binary case, K binary variables are used to redefine
the original optimization problem variables:
g K1

Tne = -1 + 2K 1 Z 2k@nCK+cK+k-
k=0

(16)

After adding the constraints as penalty weights with a multi-
plier u, the QUBO matrix is defined as

incK+ClK+k1 noCK+coK+ky —

§ k an Y xng

n3=0

2k1 +1
= §n1n2 60162 6/61 k}z 2K

- 6clyn1 (ﬂ + ,U/) - QCM + ﬂ)

9k1+ka+1 m
mk’(x”1 s Xnsy) + Onyng k-T2

To take advantage of the multiple solutions obtained from
the annealer, Delilbasic e al. have proposed the following
approach. Firstly, each of the S best solutions (in terms of en-
ergy) is tested on a validation set (that may coincide with the
training set). Subsequently, a weighted average is performed.
More precisely, the weights of the solutions with an accuracy
above a predefined threshold are given by a softmax function
applied to the values multiplier - accuracy, with multiplier
being a real value and accuracy being the accuracy achieved
by the s-th solution. Conversely, the weights of the other
solutions are set to zero. The resulting mean variables 7,,.
are used in (I3) to classify the new samples. Actually, this
approach allows also addressing larger datasets (part of the
dataset can be used only in the weighting step).

9k1+ka+2

+ 6(/'1(/'2 (17)

C. LOCAL SVYMs

Reducing the number of input samples to a classical (binary)
SVM by means of a locality technique has demonstrated
to be successful. In 2006, Blanzieri and Melgani have pro-
posed and empirically evaluated the KNNSVM classifier

4

[13], namely, a local SVM trained on the samples selected
by a k-NN model, obtaining good results. Specifically, the
k-NN and the SVM must operate in the same transformed
feature space. However, for RBF kernels (like the Gaussian
kernel) and polynomial kernels with degree 1, the Euclidean
distance can be used as the distance metric for the £-NN [13]].
Additionally, local SVMs have been theoretically charac-
terised by, for example, Hable [|14] and Meister and Steinwart
[15]. Nevertheless, despite the accuracy enhancement and the
reduced training time per model (due to the lower number of
samples used for training), the kNNSVM classifier requires
to train an SVM for each test instance (unless the nearest
neighbors belong to the same class), posing a serious bottle-
neck in terms of execution time. To address this issue, Segata
and Blanzieri have devised the approach outlined below.

1) FaLK-SVM

FaLK-SVM [16] improves the execution time of the
kNNSVM classifier [13]] by leveraging a data structure pro-
posed by Beygelzimer et al. for efficient nearest-neighbor
operations, i.e., the cover tree [17]. Essentially, the idea
consists in covering the training set with a set of local SVM
models, and predicting the label of a test instance with
the most suitable (pre-trained) local model. More in detail,
FalLK-SVM is trained as follows: a cover tree is built on
the training set; the centres of the local SVMs are selected
through the cover tree, which allows the efficient retrieval
of data samples that are far from one another, limiting the
overlap of the local models; the local SVMs for which
the local training set does not contain only one class are
trained. Specifically, the selection procedure ends when each
training sample belongs to the &’-neighborhood of at least
one centre, where k' < k is a hyperparameter controlling
the local models redundancy. In addition, at training time,
the association between each training point and the centre
for which the neighbor ranking of the given training point is
the smallest is determined. In this way, at prediction time, it
is only necessary to identify the nearest neighbor of the test
instance in the training set and execute the associated local
model. Concerning the time complexity, the training step has
a worst-case complexity of O(kN x max(log N, k?)), with k
being the number of nearest neighbors selected and IV being
the number of training samples, whereas the prediction of a
new label has a complexity of O(max(log N, k)).

In the same article, a variant of FaLK-SVM, denoted as
FalLK-SVMLI, has also been presented. Essentially, FaLK-
SVMI incorporates a grid-search model selection procedure
that is run before the training of FaLK-SVM. In practice,
each combination of local model parameters is tested, us-
ing a custom k-fold cross-validation, on m local models
with randomly selected centres. In this custom x-fold cross-
validation, only the &’ nearest neighbors of the model centre
are considered for the split into folds, whereas the remaining
k — k' samples of the k-neighborhood are added to the
training set of each «-fold iteration. Eventually, the parameter
configuration that maximizes the average accuracy of the m
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models is selected and employed for all local models.

lll. LOCAL QUANTUM-TRAINED SVMS

This section introduces the proposed approach and provides
details about the implementation. The code is publicly avail-
able at https://github.com/ZarHenry96/local-qtrained-svms.

A. APPROACH

Quantum-trained support vector machines have exhibited
performance akin to their classical counterparts [6], [[7], [10].
However, the restricted connectivity of the current quantum
annealers places constraints on the size of the trainable
models. Various strategies have been proposed to address
this limitation and exploit larger training sets, including the
construction of ensembles of SVMs [6] and the weighting
of the best solutions (in terms of energy) retrieved by the
annealer based on their performance on a large validation
set [7] (as illustrated in Sections and [[[-B2). The
approach proposed here consists in the localised application
of quantum-trained SVM models. Indeed, in the classical do-
main, local SVMs have demonstrated superior performance
compared to their global counterparts (see Section for
more details). Furthermore, in this way, large training sets
represent no more an issue, as each local model is trained
solely on the k-neighborhood of the model centre.

Essentially, in this work, FaLK-SVM, the method for
efficient local SVMs outlined in Section [[I-CI] has been
interfaced with two quantum-trained SVM models: the
quantum-trained SVM for binary classification detailed in
Section (QBSVM), and the quantum-trained SVM for
multiclass classification detailed in Section[[I-B2|(QMSVM).
The resulting workflow is straightforward. In fact, the only
difference compared to the standard FaLK-SVM resides in
the local models employed, which are trained on a quantum
annealer and run classically. Actually, another innovative as-
pect of this study is the assessment of FaALK-SVM with local
single-step multiclass classification models such as QMSVM
and CS SVM, which has been taken into account for compar-
ison (CS SVM is the basis of QMSVM, as mentioned in Sec-
tion[[I-B2). Indeed, FaLK-SVM has already been assessed in
a multiclass classification task, but employing a one-against-
one (OAO) approach with local binary SVMs [23].

B. IMPLEMENTATION DETAILS

The approach described in the previous section has been
implemented building upon the FaLK-SVM implementation
provided by Segata [24]]. Specifically, that implementation
of FaLK-SVM is written in C++, whereas the codes for
QBSVM [25] and QMSVM [26] are written in Python,
since Python is the only language supported by D-Wave
for interacting with their quantum annealers. Therefore, to
interface FaLK-SVM with the quantum-trained models, a
Python class named PythonSVM has been implemented and
embedded within the FaLK-SVM C++ framework, allowing
the execution of Python code within the C++ application. For
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this purpose, the functions, types, and macros supplied by the
Python.h header file have been employed.

From an approach-related perspective, two aspects are
worth to be discussed. Firstly, to reduce the training time,
the reuse of the QUBO matrix embeddings has been im-
plemented. Basically, when a QUBO matrix of a certain
size is submitted for the first time to the quantum annealer,
the embedding for a complete matrix of the same size is
computed, applied, and stored in memory. In all subsequent
calls with QUBO matrices of that size, the precomputed
embedding is retrieved and applied. This proves particularly
advantageous as the QUBO matrix size is the same for all
local models. Secondly, two notable features have been de-
veloped, although they have not been used in the experiments
presented here (still, the code includes them). The first one is
the local usage of the techniques illustrated in Sections|lI-B1
and for leveraging larger datasets. This allows increas-
ing the size of the neighborhoods used for training local
models, a parameter otherwise limited by the connectivity
of the annealer. The second feature pertains to multiclass
classification tasks and consists in the dynamic selection of
the local model based on the number of classes present in
a k-neighborhood. Indeed, with two classes, QBSVM needs
half of the binary variables compared to QMSVM.

From a model-related perspective, some modifications
have been applied to the original implementations. On the
FalLK-SVM front, the computation of the performance met-
rics and the criterion for assessing the class balance of
the m k-neighborhoods used in the local model selection
procedure (of FaLK-SVMI) have been extended to multi-
class classification. Regarding the grid-search local model
selection, support for the parameters of the quantum-trained
models has been incorporated; additionally, the number of
folds x for the internal custom k-fold cross-validation (10
by default) and the number of samples used to evaluate the
performance of the m models (% by default) have been
parametrized. Eventually, a data standardization procedure
has been introduced in the external canonical x-fold cross-
validation provided for assessing the performance of FalLK-
SVM. On the local models front, a post-selection procedure
has been implemented for the QBSVM’s bias (). Essentially,
all values within the interval [—10,+10], with a step of
0.1, are assessed on the training set to identify the best
one. Preliminary experiments have demonstrated that this
approach significantly outperforms the computation of b by
means of (I0). Concerning CS SVM, a C implementation
of the model [27] has been utilized. In the local version,
the CS SVM executable files are directly invoked from the
Python code (after locally mapping the labels to {1,...,C},
if necessary). Clearly, more efficient solutions are possible.
For example, in the large-scale experiment presented in Sec-
tion a custom version of CS SVM has been employed
in the local setup. This more efficient version, trained with a
slightly modified C code and executed via novel Python code,
cannot be fully distributed due to the licensing constraints of
the original CS SVM implementation [27].
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TABLE 1. Local (a) and global (b) methods considered.

(a) Local methods. (b) Global methods.
Name Classification type | Local model | Local model training Name Classification type | Model training
FaLK-SVMI (C) Binary SVM Classical SVM Binary Classical
FaLK-SVMI (QB) Binary QBSVM Quantum QBSVM Binary Quantum
FaLK-SVMI (CS) Multiclass CS SVM Classical CS SVM Multiclass Classical
FaLK-SVMI (QM) Multiclass QMSVM Quantum QMSVM Multiclass Quantum

TABLE 2. Number of features and selected classes for both basis datasets.

Dataset name | Features number

Selected classes (binary)

Selected classes (multiclass)

Toulouse 8

building, pervious surface

building, pervious surface, water

Potsdam 5

IV. EMPIRICAL EVALUATION

This section deals with the methods evaluated, the datasets
employed, the experimental setup used, and the results
achieved. Specifically, the classical side of the experiments
has been run on a shared machine equipped with an Intel
Xeon Gold 6238R processor operating at 2.20 GHz and 125
GB of RAM. Instead, the quantum side has been run on the
Advantage system 5.3/5.4 provided by D-Wave, a quantum
annealer situated at Forschungszentrum Jiilich.

A. METHODS

The methods taken into account in this study are reported
in Table [T} Specifically, four local methods (Table [Ta) and
four global methods (Table [Ib) have been considered here.
The local ones are combinations of FaLK-SVMI (the version
of FaLK-SVM with the local model selection procedure
detailed in Section[[I-CT)) and different local models: a binary
and a multiclass classically-trained SVMs, namely, SVM
and CS SVM, and their quantum-trained counterparts, i.e.,
QBSVM and QMSVM. Notice that FalLK-SVMI (C) is the
original FaLK-SVMI implementation; additional information
about the other local methods are available in Section [}
Regarding the global ones, they correspond to the global
application of the aforementioned classically- and quantum-
trained SVM models. In particular, for the standard binary
SVM, the implementation from LibSVM [28]] version 2.88
(the version used in the original FaLK-SVM framework)
has been employed. Instead, for QBSVM and QMSVM, the
strategies outlined in Sections [[I-BT] and for handling
big datasets have been utilized. Otherwise, they could have
not been trained on the considered datasets, given the dataset
sizes used.

B. DATASETS

The methods reported in Table [I] have been assessed on
datasets taken from the remote sensing domain, a domain
in which both FaLK-SVM and the quantum-trained SVMs
have already shown good performance [7], [9], [10], [23].
Specifically, the datasets employed here have been generated
from the SemCity Toulouse [29] and ISPRS Potsdam [30]
datasets, which consist of multispectral images with multi-
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low vegetation, tree

building, low vegetation, tree

ple classes (and have been employed also in the QMSVM
article [7]]). In practice, the task consists in predicting the
class of each pixel. Table 2] provides details on the number
of features and classes selected for binary and multiclass
classification for both datasets. In particular, for multiclass
classification, the number of classes has been restricted to
three in order to maximize the number of samples that could
be embedded in the annealer. Instead, the datasets sizes
employed are experiment-dependent, thus they are presented
in Section Regarding the datasets generation, an equal
(or approximately equal) number of samples for each class
has been randomly selected from tile 4 for Toulouse and
tile 6.9 for Potsdam, except in the large-scale experiment.
Indeed, in the last experiment, the training set has been
created by selecting an equal number of data points for each
class from each of the 24 Potsdam tiles labelled as training.
Moreover, two distinct test sets have been generated for it: the
former comprises data points randomly selected in the usual
way from Potsdam tile 5.13 (a non-training tile); the latter,
intended for visualization, encompasses all the data points
belonging to the classes of interest within a 1000 x 1000
pixels square in the same tile.

C. EXPERIMENTAL SETUP

In this work, four experiments with different objectives have
been carried out. In detail, in the first experiment, the per-
formance of all considered binary classification methods is
assessed and compared. In the second one, the same is done
with the multiclass classification methods. Instead, in the
third experiment, the performance scaling of the local and
global fully-classical methods (both binary and multiclass)
is analysed; the methods involving quantum-trained models
have been omitted since the quantum annealing time con-
sumption would have been excessive. In the final experiment,
the performance of all multiclass classification methods, also
the ones involving quantum-trained models, are assessed
(and visualized) on a large-scale dataset.

In the first three experiments, the performance of the
methods have been evaluated using a x-fold cross-validation
procedure with ten folds (x = 10). In practice, the input
dataset is partitioned into k subsets, also known as folds.
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TABLE 3. Datasets sizes for each experiment. The | symbol in the last row separates the training set size from the (two) test sets sizes.

Basis datasets Datasets sizes
Toulouse, Potsdam 500
Toulouse, Potsdam 150, 500
Toulouse, Potsdam | 1000, 1500, 2000, 10000, 15000, 40000
Potsdam 11016 | (300000, 871188%)

Experiment
I - binary classification
II - multiclass classification
III - performance scaling
IV - large scale (multiclass)

* The occurrences of the three classes in this test set are 389900, 343438, and 137850, respectively.

TABLE 4. Parameters values used for binary (a) and multiclass (b) classification methods. In particular, the m value between parentheses in (b) is the one used in
the large-scale experiment.

(a) Binary classification methods.

Method k | K | m | & (internal) Kernel 5y A| B | K | ¢ S
FalLK-SVMI (C) 80 | 60 8 5 Gaussian | —0.5,1 3 - - - -
FaLK-SVMI (QB) | 80 | 60 8 5 Gaussian | —0.5,1 - 2 2 1 | 100
SVM - - - - Gaussian 1 3 - - - -
QBSVM - - - - Gaussian 1 - 2 2 1 | 100

(b) Multiclass classification methods.

Method k| K m r (internal) Kernel ~ A| K| uplpB S
FaLK-SVMI (CS) | 24 | 18 | 8(10) 3 Gaussian | —0.5,1 1 - - - -
FaLK-SVMI (QM) | 24 | 18 | 8(10) 3 Gaussian | —0.5,1 - 2 1 1 | 100

CS SVM - - - - Gaussian 1 1 - - - -

QMSVM - - - - Gaussian 1 - 2 1 1 100

Then, x — 1 folds constitute the training set, whereas the
remaining one serves as the test set. This last step is iterated
until each fold has been utilized once as the test set. In
particular, the stratified k-fold cross-validation, trying to
preserve the original class ratio in the folds, has been used
here. In addition, to have a fair comparison, the same datasets
splits have been employed for all methods. Conversely, in
the final experiment, no cross-validation procedure has been
used, since the input data were already divided into training
set and test sets. The datasets sizes used for each of the four
experiments are detailed in Table [3} as already explained
in Section [[V-B] the large-scale experiment differs in the
dataset generation procedure employed. Additionally, in all
experiments, a data standardization procedure (involving the
subtraction of the mean and the division by the standard de-
viation) has been applied to the training and test data features
before training and running the (local/global) methods.

Regarding the parameters values employed for the various
methods, they are detailed in Table 4] Let us consider first
the binary classification methods (Table fa). The training
neighborhood size (k) for the local methods has been set to
80, a value close to the maximum number of samples that
can be embedded in the present quantum annealers with the
QBSVM QUBO formulation (considering the values of B
and K, and finding the embedding for a complete matrix).
In addition, a relatively-high degree of local models over-
lap (regulated by k') has been utilized. Concerning FaLK-
SVMTI’s local model selection, 8 local models (m) and 5 folds
(k internal) have been used; additionally, all £’ samples have
been employed in the assessment of the m local models.
Specifically, the grid search has been applied only to the
Gaussian kernel width , to find the best value between —0.5
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and 1, with —0.5 corresponding to the usage of the median
of the distances in the neighborhood as the kernel width.
Therefore, with v = —0.5, each local SVM model could
have a different kernel width value (more details can be found
in the FaLK-SVM article [16]). Conversely, for the global
methods, ~ has been fixed to 1 (as their implementations do
not support the usage of the median as the kernel width). To
ensure a fair comparison between classically- and quantum-
trained models, the SVM cost parameter (A) has been set to 3
(for QBSVM, A is determined by B and K). Concerning the
QBSVM-specific parameters, the encoding basis (B) and the
number of binary variables per coefficient (/) have been set
to small values, to enable the embedding of an adequate num-
ber of training samples. Furthermore, the penalty coefficient
(&) has been set to 1 (the same value employed for QMSVM,
where it is denoted as p), and the best 100 solutions found
by the annealer have been taken into account for averaging
(.S). Lastly, for the global application of QBSVM, a stratified
training data split has been used, with each slice (except the
last one) having a number of samples equal to k.

Similar considerations apply to the multiclass classifica-
tion methods (Table fb)). Indeed, the training neighborhood
size (k) for the local methods has been set to 24, a value close
to the maximum number of samples that can be embedded
in the current quantum annealers with the QMSVM QUBO
formulation (considering the values of C' = 3 and K, and
finding the embedding for a complete matrix). Concerning
the local model selection, 3 folds (k internal) have been
utilized, due the smaller number of samples involved. More-
over, in the large-scale experiment, 10 local models (m)
have been used instead of 8. Instead, the CS SVM cost
parameter (A) has been set to 1 for a fair comparison with the
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QMSVM-based methods. In fact, the following relationship
holds: A = 1/f. Regarding the QMSVM-related param-
eters (K, u, 3, S), the same configuration employed in the
QMSVM article [[7] (where K is denoted as B) has been
used here. The accuracy threshold definition (thr = 0.2 %
min(acc) + 0.8 * max(acc)) and the multiplier value (10)
for weighting the .S best solutions returned by the annealer
(on the local k-neighborhood) have also been adopted from
that work. In contrast, the max_min_ratio used to prune
the small QUBO matrix coefficients has been set to a high
value (1000), rendering the pruning procedure ineffective
(the embedding is computed for a complete matrix here).
Eventually, for the global application of QMSVM, a stratified
random selection of the training samples has been used, with
a number of chosen samples equal to k.

The quantum annealing parameters employed in the exper-
iments are detailed in Table[5](the default annealing schedule
has been used). Specifically, this is the same configuration
used in the QMSVM article [7]]; the evaluation of differ-
ent configurations is left for future work. With the setup
employed in this article, training a single QBSVM model
requires approximately 0.360 s of quantum annealing time
(the number of binary variables involved is 160). A slightly
shorter time interval is necessary for a QMSVM model (for
which the number of binary variables is 144).

TABLE 5. Quantum annealing parameters.

Number of reads | Annealing time | Chain strength
000 | 200ps | I

D. RESULTS
The performance metric chosen for the methods evaluation is
the classification accuracy, which is given by

number of correctly classified samples

accuracy =
4 total number of samples

(18)
In particular, in the first three experiments, employing the x-
fold cross-validation, the accuracy calculated on the entire
dataset (considering the predictions from the x models) is
reported. Given that a stratified s-fold cross-validation has
been used, the folds may not have precisely the same number
of elements. Consequently, there could be a small discrep-
ancy between the reported accuracy and the average accu-
racy over folds. Nevertheless, this difference is negligible.
Conversely, in the last experiment, the accuracy achieved on
the two test sets is presented. Moreover, for the second test
set, which is not (class-) balanced, two additional metrics
are reported. These metrics are the balanced accuracy [31]],
corresponding to the average recall over classes, and the
F1 score [32] (namely, the harmonic mean of precision and
recall) averaged over classes.

1) Binary Classification
In the first experiment, the performance of the binary clas-
sification methods have been assessed. The results achieved
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are reported in Table [6] In practice, in the case of Toulouse,
all methods have obtained good results, but the entirely-
classical methods have demonstrated superior performance
overall, and the local methods have outperformed their global
counterparts. Conversely, in the case of Potsdam, the meth-
ods have obtained worse results overall, with the classical
SVM achieving the best performance, and FaLK-SVMI (QB)
outperforming its classical counterpart (albeit not by much).
Concerning QBSVM, it has shown the worst performance
among the evaluated methods also in this case. Therefore, the
local application of QBSVM has proven effective. In fact, it
has achieved results not too far from, if not better than, its
classical counterpart.

2) Multiclass Classification

In the second experiment, the performance of the multiclass
classification methods have been assessed. The results are
reported in Table[/| Let us focus first on the smaller datasets
(size 150), for which the average number of local models
aligns with that of the binary classification methods in the
first experiment. Specifically, in the case of Toulouse, the
local methods have obtained the best results and the entirely-
classical ones (both local and global) have outperformed their
quantum-trained counterparts. The overall results obtained
are good. Instead, in the case of Potsdam, the accuracy
values are lower, yet the trend is similar. The exception
is represented by FaLK-SVMI (QM), which has performed
worse than not only FaLK-SVMI (CS) but also CS SVM.
Nevertheless, with larger datasets (size 500), FaLK-SVMI
(QM) has been the top-performing method, surpassing both
FalLK-SVMI (CS) and CS SVM. Regarding the performance-
based ordering of the other methods, it is the same. Overall,
the larger dataset size has proven advantageous, particularly
in the case of Toulouse. Eventually, even in this experiment,
the global quantum-trained model (QMSVM) has exhibited
the worst performance among the methods evaluated. In sum-
mary, this second experiment has proven the efficacy of lo-
cally applying both classically- and quantum-trained single-
step multiclass SVMs, with the quantum-trained ones being
slightly better in the case of larger datasets. In general, the
possibility for the quantum-trained methods to outperform
their classical counterpart is given by the local averaging of
the S best solutions, but the results strictly depend on the
quality of the solutions found by the annealer.

3) Performance Scaling (Classical Methods)

In the third experiment, a performance scaling analysis has
been carried out on the classical (binary and multiclass)
local methods, taking into account their global counterparts
for comparison. In fact, in the previous experiments, FalL.K-
SVMI (QB) and FaLK-SVMI (QM) have obtained results not
too far (except in one instance) from their classical counter-
parts, which can then be used as indicators of performance.
Moreover, the quantum annealing time consumption would
have been excessive for the available resources.
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TABLE 6. Accuracy achieved by binary classification methods (columns) on different datasets (rows) of size 500. For FaLK-SVMI, the average number of local
models (over folds) and the size of the local models are reported between square brackets; instead, for QBSVM, the number of models (all with size 80, except the
last one with size 50) is shown between square brackets.

FaLK-SVMI (C) | FaLK-SVMI (QB) | SVM QBSVM
Toulouse (500) | 92.4% [15.9, 80] 89.8% [15.9, 80] 91.8% | 88.2% [6, |
Potsdam (500) | 69.8% [16.5, 80] 70.4% [16.5, 80] 73.0% | 68.6% [6, ]

TABLE 7. Accuracy achieved by multiclass classification methods (columns) on datasets (rows) of two different sizes. For FaLK-SVMI, the average number of local
models (over folds) and the size of the local models are reported between square brackets; instead, for QMSVM, the size of the model is shown between square

brackets.

FaLK-SVMI (CS) | FaLK-SVMI(QM) | CSSVM | QMSVM
Toulouse (150) | 79.3% [14.2,24] | 77.3% [14.2, 24] 76.0% | 72.0% [, 24]
Potsdam (150) | 72.0% [14.3,24] | 66.0% [14.3, 24] 70.0% | 60.7% [, 24]
Toulouse (500) | 85.2% [50.2, 24] | 85.4% [50.2, 24] 308% | 73.0% [, 24]
Potsdam (500) | 72.6% [473,24] | 72.8% [47.3, 24] 714% | 58.8% [, 24]

TABLE 8. Accuracy achieved by classical binary classification methods (columns) on datasets with different sizes (rows). For comparison, the pertinent results

presented in Table@]are reported here. In particular, for FaLK-SVMI (C), the average number of local models (over folds) and the size of the local models are

reported between square brackets.

(a) Toulouse (binary). (b) Potsdam (binary).

FaLK-SVMI (C) SVM FaLK-SVMI (C) SVM

500 92.4% [15.9, 80] 91.8% 500 69.8% [16.5, 80] 73.0%
1000 92.1% [33.7, 80] 91.9% 1000 73.2% [34.6, 80] 71.8%
1500 91.9% [54.4, 80] 92.4% 1500 72.3% [54.6, 80] 72.3%
2000 91.5% [73.8, 80] 91.7% 2000 71.5% [74.6, 80] 72.6%
10000 91.6% [423.1, 80] 92.2% 10000 | 74.5% [400.2, 80] 74.7%
15000 91.5% [645.3, 80] 92.0% 15000 | 74.1% [603.4, 80] 75.0%
40000 | 91.7% [1788.9,80] | 92.1% 40000 | 74.8% [1641.9,80] | 75.5%

TABLE 9. Accuracy achieved by classical multiclass classification methods (columns) on datasets with different sizes (rows). For comparison, the pertinent results
presented in Tableare reported here. In particular, for FaLK-SVMI (CS), the average number of local models (over folds) and the size of the local models are

reported between square brackets.

(a) Toulouse (multiclass).

(b) Potsdam (multiclass).

FaLK-SVMI (CS) | CSSVM FaLK-SVMI (CS) | CS SVM

150 79.3% [14.2,24] 76% 150 72.0% [14.3, 24] 70%
500 85.2% [50.2, 24] 80.8% 500 72.6% [47.3, 24] 71.4%
1000 87.3% [104.7, 24] 81.7% 1000 72.8% [100.8, 24] 69.2%
1500 88.1% [165.9, 24] 82.1% 1500 73.1% [155.5, 24] 70.1%
2000 86.4% [221.5, 24] 81.4% 2000 74.0% [211.5, 24] 70.4%
10000 | 87.8% [1167.8,24] 81.2% 10000 | 77.7% [1079.9, 24] 69.8%
15000 | 88.2% [1761.7,24] 81.2% 15000 | 77.9% [1646.0, 24] 69.6%
40000 | 89.1% [4779.5, 24] 81.3% 40000 | 79.0% [4465.1, 24] 69.4%

The results are showcased in Tables [§] and [0l Let us
consider binary classification (Table [§) first. In the case of
Toulouse, the performance of both FaLK-SVMI (C) and
SVM have been quite stable while increasing the dataset
size, with little variations (worsening and improvement, re-
spectively) compared to the baseline size of 500. However,
the accuracy values for dataset size 500 were already re-
ally high. In contrast, in the case of Potsdam, where the
initial performance were worse, an improvement has been
observed for both FaLK-SVMI (C) and SVM. Specifically,
the improvement has been more marked yet less consistent
for FaLK-SVMI (C), and less marked but more consistent
(after an initial drop) for SVM. Regarding multiclass clas-
sification (Table E]), the scenario is the following: in both
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cases (Toulouse and Potsdam), the performance of FaLK-
SVMI (CS) have almost always improved while increasing
the dataset size; conversely, the performance of CS SVM
have either significantly improved at the beginning and then
remained quite stable (Toulouse) or fluctuated around the
initial value (Potsdam). In addition, despite the slight drop
for sizes 2000 and 10000, the enhancement for FaLK-SVMI
(CS) has been more marked for Toulouse. Essentially, this
experiment has proven that local methods can leverage larger
datasets, particularly FaLK-SVMI (CS), which has outper-
formed CS SVM in all tests. In contrast, FALK-SVMI (C) has
been outperformed by SVM in almost all cases (albeit not by
much), but has shown good stability when its performance
have not improved (Toulouse).
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TABLE 10. Accuracy achieved by multiclass classification methods (columns) on a large-scale dataset based on Potsdam, characterised by 11016 training
samples and 300000 test samples. For FaLK-SVMI, the number of local models and the size of the local models are reported between square brackets; instead, for

QMSVM, the size of the model is shown between square brackets.

| FaLK-SVMI (CS) | FaLK-SVMI (QM) | CS SVM |

QMSVM

Accuracy | 74.2% [1326,24] | 73.8% [1326,24] |

69.9% | 55.6% [, 24]

TABLE 11. Accuracy, balanced accuracy, and average F1 score (over classes) achieved by multiclass classification methods (columns) on a second large-scale
test set based on Potsdam and consisting of 871188 samples (389900, 343438, 137850). These results have been obtained using the trained models employed for
Table For FaLK-SVMI, the number of local models and the size of the local models are reported between square brackets; instead, for QMSVM, the size of the

model is shown between square brackets.

FaLK-SVMI (CS) | FaLK-SVMI (QM) | CS SVM QMSVM
Accuracy 77.7% [1326, 24] 76.6% [1326, 24] 78.6% 62.0% [, 24]
Balanced accuracy | 72.4% [1326, 24] T1.7% [1326, 24] 68.5% 61.6% [, 24]
Average F1 score 71.9% [1326, 24] 70.9% [1326, 24] 69.0% 59.2% [, 24]

4) Large Scale (Multiclass)

In the last experiment, the performance of all multiclass
classification methods have been assessed (without x-fold
cross-validation) on a large-scale dataset based on Potsdam,
featuring one training set and two test sets (created as ex-
plained in Section [[V-B). The objective is to showcase the
performance achievable by locally applying quantum-trained
SVM models in a large-scale real-world scenario. Due to
the restricted quantum annealing resources available, only
multiclass classification and Potsdam have been taken into
account.

The results achieved on the first test set are presented
in Table [I0] Specifically, the local methods have outper-
formed the global ones, and the entirely-classical methods
have demonstrated superior performance compared to their
quantum-trained counterparts. This last point seems to con-
tradict the observations made in Section [V-D2] about the
local methods, with FaLK-SVMI (QM) performing better
than FalLK-SVMI (CS) on larger datasets. Nevertheless, the
performance differences are relatively small. Furthermore, in
this case, no «-fold cross-validation has been utilized. In fact,
the training set has been constructed by randomly sampling
data points from various tiles, and the test data points have
been randomly chosen from a different tile. Therefore, the
task is somehow different. Despite this aspect, these first re-
sults align well with the expectations based on the outcomes
of the previous experiments. Actually, a larger k£ value (100,
with &’ = 75) has also been evaluated for FaLK-SVM (CS)
in this same setup. The performance obtained were slightly
worse (accuracy = 73.6%), but CS SVM has already shown
that it does not really take advantage of larger training sets,
particularly in the case of Potsdam (see Section [V-D3J).
Regarding the second test set, the results are presented in
Table Unexpectedly, CS SVM has obtained the highest
accuracy on this second test set, performing better than both
local methods. However, given the unbalanced nature of this
test set, different performance metrics should be taken into
account. Here, the balanced accuracy and the average F1
score (over classes) have been considered (their values are
reported in the same table). In detail, according to these
metrics, both FaALK-SVMI (CS) and FaLK-SVMI (QM) have
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outperformed CS SVM, aligning with the trend observed for
the first test set and in the previous experiments. This phe-
nomenon is caused by CS SVM’s tendency to predict more
frequently the two most represented classes (building and low
vegetation) in the test set, misclassifying the less common
one (tree). This behaviour can be easily noticed in Fig.
where the predictions of the different methods are shown.
In conclusion, this final experiment has proven the practical
applicability of local quantum-trained SVMs (in particular,
the multiclass one) in a large-scale scenario. In fact, the
results obtained by FaLK-SVMI (QM) are quite good and
comparable to those achieved by its classical counterpart.

V. CONCLUSION
In this article, the local application of quantum-trained SVM
models, with the aim of enabling their usage on large datasets
and enhancing their performance, has been introduced and
empirically assessed in the remote sensing domain. Specifi-
cally, here, a method for efficient local SVMs (FaLK-SVM)
has been interfaced with two quantum-trained SVM models:
an SVM model for binary classification (QBSVM) and an
SVM model for multiclass classification (QMSVM). In ad-
dition, for comparison, FaLK-SVM has been paired for the
first time with a classical single-step multiclass classification
model (CS SVM). Details about the implementation, such
as the post-selection procedure for QBSVM’s bias, and the
experimental setup have been provided. The results have
demonstrated the effectiveness of the approach, with the local
applications of QBSVM and QMSVM obtaining results not
too far from and, in some cases, better than their classical
counterpart. The local application of CS SVM has also
yielded good results, consistently outperforming its global
counterpart. Furthermore, the performance scaling analysis
carried out on the classical local methods, serving as perfor-
mance indicators for the quantum-trained ones, has revealed
their ability to take advantage of larger datasets. Ultimately,
the last experiment has proven the practical applicability of
the local quantum-trained SVMs (specifically, the multiclass
one) in a real-world large-scale scenario.

Future work includes the assessment of these local
quantum-trained methods on datasets taken from a differ-
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FIGURE 1. Visualization of the results obtained by the multiclass classification methods on the second test set for the large-scale experiment. The corresponding
performance metrics are provided in Table[TT] Color legend: blue = building, light blue = low vegetation, green = tree.

ent domain, using different parameter configurations and a
higher number of reads. Other interesting possibilities consist
in trying to solve the classification problem by leverag-
ing quantum phases and to develop a local version of the
quantum-trained support vector regression model [8] (not
considered here).
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